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Supplementary Results 

Short model details and support 

Because TFs that are active along a regulatory path are typically active at many splits along that 

path, Fig. 2A only displays TFs the first time they are active along a path.  Supplementary Fig. 

S1 shows the full set of TF annotations for the short model.  Supplementary Tables S1 and S2 

contain the full set of targets and internal nodes in the short model as well as the external sources 

that support them.  Our literature search was not exhaustive, and in particular we did not 

investigate proteins for which there was already other evidence of HOG pathway involvement.  

When SDREM is run on the short expression data and protein-DNA edges are not included in the 

interaction network, a smaller network is predicted (Supplementary Fig. S3).  Without protein-

DNA edges in the signaling pathways, the predicted TFs and internal nodes still significantly 

overlap with the gold standard (p-values 1.03 × 10
-3

 and 1.97 × 10
-6

, respectively).  These PPI-

only SDREM predictions were similar to the original predictions with 85% of the PPI-only 

predictions appearing in the original model. 
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Supplementary Table S1. Short model targets.  The KEGG, Science Signaling, and other 

HOG models columns indicate whether the predicted TF is in the gold standard.  The other HOG 

models column summarizes the literature-based pathway models (Hohmann et al. 2007; 

Hohmann 2009; Krantz et al. 2009; de Nadal and Posas 2010; Rodríguez-Peña et al. 2010).  The 

sorbitol screen (Hillenmeyer et al. 2008) column contains the lowest p-value for the gene across 

all replicates.  The SGD column indicates whether the TF was annotated with decreased 

resistance to hyperosmotic stress in the Saccharomyces Genome Database.  Double horizontal 

lines separate predictions that are in the HOG gold standard, have some other form of HOG or 

osmotic stress response support, or have no known osmotic stress association. 

Gene ORF name KEGG Science 

Signaling 

Other 

HOG 

models 

Sorbitol 

screen 

SGD Literature 

Hot1 YMR172W N Y Y 1.72 × 10
-6
 N  

Msn2 YMR037C Y Y Y 8.85 × 10
-3
 N  

Msn4 YKL062W Y Y Y 7.02 × 10
-4
 N  

Sko1 YNL167C N Y Y N/A N  

Aft2 YPL202C N N N 5.51 × 10
-3
 N Aft2 has been implicated 

as a TF that activates salt 

stress genes (Miller et al. 

2011) 

Cin5 YOR028C N N N 5.65 × 10
-7
 N Cin5 deletion mutants 

have been found to exhibit 

growth sensitivity to 

osmotic shock, and Cin5 
induction peaks 30 to 60 

minutes after exposure to 

moderate NaCl-induced 
stress (Nevitt et al. 2004).  

Bound by Hog1 under 

osmotic stress (Pokholok 
et al. 2006). 

Ime1 YJR094C N N N 4.15 × 10
-5
 N  

Pdr1 YGL013C N N N 3.66 × 10
-5
 N  

Rox1 YPR065W N N N 2.10 × 10
-4
 N Rox1 is one of 20 genes 

that is both directly bound 

by Sko1 and induced at 

least threefold in response 
to osmotic stress (Proft et 
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al. 2005). 

Sok2 YMR016C N N N 7.94 × 10
-11

 Y  

Spt23 YKL020C N N N 3.78 × 10
-10

 N  

Yap6 YDR259C N N N 2.13 × 10
-3
 N Yap6 is a TF associated 

with osmotic stress 
response (Ni et al. 2009). 

Dig1 YPL049C N N N 3.11 × 10
-2
 N  

Gts1 YGL181W N N N 2.00 × 10
-3
 N  

Phd1 YKL043W N N N 1.94 × 10
-2
 N  

Rap1 YNL216W N N N N/A N Rap1 may play a role in 

regulating ribosomal 

protein genes in response 
to osmotic stress, but not 

as significantly as Ifh1 

(Wade et al. 2004). 

Stb1 YNL309W N N N N/A N  

Ste12 YHR084W N N N N/A N When Hog1 or Pbs2 is 

deleted Ste12 is activated 

by osmotic stress 
(O‟Rourke et al. 2002). 

Swi5 YDR146C N N N 3.89 × 10
-1
 N  
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Supplementary Table S2. Short model internal nodes.  See Supplementary Table S1 for 

column descriptions. 

Gene ORF name KEGG Science 

Signaling 

Other 

HOG 

models 

Sorbitol 

screen 

SGD Literature 

Cdc24 YAL041W N N Y N/A N  

Hog1 YLR113W Y Y Y 1.00 × 10
-20

 Y  

Pbs2 YJL128C Y Y Y 1.00 × 10
-20

 Y  

Ste11 YLR362W Y Y Y N/A Y  

Ste20 YHL007C Y Y Y 6.33 × 10
-1
 Y  

Ypd1 YDL235C Y Y Y N/A N  

Aft1 YGL071W N N N 7.51 × 10
-1
 Y Aft1 has been implicated 

as a TF that activates salt 

stress genes (Miller et al. 
2011) 

Asf1 YJL115W N N N 7.96 × 10
-1
 N Asf1 reassembles 

chromatin following 
hyperosmotic-stress-

induced transcription 

(Klopf et al. 2009). 

Bem1 YBR200W N N N 1.00 N Bem1 contributes to 
Ste20‟s function in the 

HOG pathway (Winters 

and Pryciak 2005). 

Cdc28 YBR160W N N N N/A N Osmotic stress decreases 
the kinase activity of the 

Cln3-Cdc28 complex 

(Bellí et al. 2001). 

Cks1 YBR135W N N N N/A N Cks1 is salt sensitive (Yu 

and Reed 2004). 

Cln2 YPL256C N N N 2.15 × 10
-1
 N Cln2 is downregulated in 

osmotic stress conditions 
(Bellí et al. 2001). 

Dig2 YDR480W N N N 2.03 × 10
-5
 N  

Far1 YJL157C N N N 5.83 × 10
-4
 Y  

Gal11 YOL051W N N N 1.25 × 10
-1
 N Deletion of Mediator 

complex members 

including Gal11 revealed 
that Mediator is essential 

for gene expression in 

response to osmotic stress 

(Zapater et al. 2007). 

Hht1 YBR010W N N N 8.05 × 10
-6
 N  

Kss1 YGR040W N N N 3.86 × 10
-3
 N Although Kss1 is a 

MAPK in the filamentous 
growth pathway, it can 
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also be activated by 

osmotic stress (Hao et al. 
2008). 

Las17 YOR181W N N N N/A Y  

Med2 YDL005C N N N N/A N Deletion of Mediator 

complex members 
including Med2 revealed 

that Mediator is essential 

for gene expression in 

response to osmotic stress 
(Zapater et al. 2007). 

Nrg1 YDR043C N N N 4.78 × 10
-2
 N Nrg1 mutants show 

increased osmotic stress 
resistance (Vyas et al. 

2005). 

Pcl2 YDL127W N N N 1.06 × 10
-2
 N A quintuple deletion of 

Pcl1,2-type cyclins 
including Pcl2 exhibit a 

growth defect in a high 

salt medium (Lee et al. 
1998). 

Rsp5 YER125W N N N N/A N Rsp5 deletion reduces 

transcription of stress 

response genes in osmotic 
stress conditions (Haitani 

et al. 2006). 

Rvs167 YDR388W N N N 8.35 × 10
-1
 Y Rvs167 mutants exhibit 

stronger actin 
cytoskeleton 

abnormalities in the 

presence of salt (Bauer et 
al. 1993). 

Sir3 YLR442C N N N N/A N Osmotic stress affects 

Sir3 telomere binding 

(Mazor and Kupiec 
2009). 

Skn7 YHR206W N N N 2.54 × 10
-2
 N Skn7 is a TF associated 

with osmotic stress 
response (Ni et al. 2009). 

Ste7 YDL159W N N N N/A N Ste7 is phosphorylated 

following HOG pathway 

activation (Shock et al. 
2009). 

Tec1 YBR083W N N N 2.74 × 10
-1
 N HOG pathway activation 

inhibits Tec1 DNA 

binding (Shock et al. 
2009). 

Fkh2 YNL068C N N N 3.91 × 10
-1
 N Fkh2 has not been 

experimentally validated, 

but was previously 
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predicted to be a 

significant hyperosmotic 

shock TF (Lin et al. 
2007). 

Fus3 YBL016W N N N N/A N When Hog1 or Pbs2 is 

deleted Fus3 is activated 

by osmotic stress 
(O‟Rourke et al. 2002). 

Hap4 YKL109W N N N 8.78 × 10
-2
 N  

Hhf1 YBR009C N N N 8.86 × 10
-3
 N  

Hhf2 YNL030W N N N N/A N  

Hht2 YNL031C N N N 3.44 × 10
-1
 N  

Kti12 YKL110C N N N 5.79 × 10
-1
 N  

Rpo21 YDL140C N N N N/A N  

Srb5 YGR104C N N N 4.53 × 10
-1
 N  

Ste5 YDR103W N N N N/A N Ste5 facilitates osmotic 
stress-related MAPK 

pathway cross-talk in 

Pbs2 mutants (Flatauer et 
al. 2005).  

Swi4 YER111C N N N 1.75 × 10
-1
 N Temperature sensitivity 

of Swi4 mutants is 

suppressed by sorbitol 
(Madden et al. 1997). 

Swi6 YLR182W N N N 7.38 × 10
-1
 N  
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Supplementary Figure S1. Short model active TFs 
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HOG gold standard 

Supplementary Table S3 presents the entire HOG gold standard, composed of figures from  

KEGG (Kanehisa and Goto 2000), the Science Signaling Database of Cell Signaling 

(http://stke.sciencemag.org/cgi/cm/stkecm;CMP_14620), and several literature sources 

(Hohmann et al. 2007; Hohmann 2009; Krantz et al. 2009; de Nadal and Posas 2010; Rodríguez-

Peña et al. 2010).  Supplementary Fig. S2 emphasizes the diversity among these seven gold 

standard models.  Only 9 of the 42 proteins are present in all of the gold standard sources.  

Fifteen proteins appear in only one source, indicating that there may be less certainty that these 

proteins are truly HOG pathway members. 
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Supplementary Table S3. Complete HOG gold standard.  All 42 members of the HOG gold 

standard are listed, including the sources, and are sorted in descending order by the number of 

databases or literature sources they appear in.  TFs are denoted with „Y‟ in the TF column. 

Gene ORF name TF KEGG Sci. 

Sig. 

Hohmann 

et al 2007 

Hohmann 

2009 

Krantz 

et al 

2009 

de Nadal 

& Posas 

2010 

Rodríguez-

Peña et al 

2010 

Hog1 YLR113W N X X X X X X X 

Pbs2 YJL128C N X X X X X X X 

Sho1 YER118C N X X X X X X X 

Sln1 YIL147C N X X X X X X X 

Ssk1 YLR006C N X X X X X X X 

Ssk2 YNR031C N X X X X X X X 

Ste11 YLR362W N X X X X X X X 

Ste20 YHL007C N X X X X X X X 

Ypd1 YDL235C N X X X X X X X 

Cdc42 YLR229C N   X X X X X X 

Ssk22 YCR073C N   X X X X X X 

Msb2 YGR014W N   X   X X X X 

Ste50 YCL032W N   X X   X X X 

Hot1 YMR172W Y   X   X X   X 

Msn2 YMR037C Y X X     X   X 

Msn4 YKL062W Y X X     X   X 

Opy2 YPR075C N     X   X X X 

Ptc1 YDL006W N   X X X X     

Ptp2 YOR208W N   X X X X     

Ptp3 YER075C N   X X X X     

Hkr1 YDR420W N       X   X X 

Sko1 YNL167C Y   X     X   X 

Cdc24 YAL041W N     X   X     

Cla4 YNL298W N     X X       

Msn1 YOL116W Y   X     X     

Rck2 YLR248W N   X     X     

Smp1 YBR182C Y         X   X 

Act1 YFL039C N   X           

Ctt1 YGR088W N X             

Eft1 YOR133W N   X           

Eft2 YDR385W N   X           

Glo1 YML004C N X             

Gpd1 YDL022W N   X           

Mcm1 YMR043W Y X             

Nbp2 YDR162C N         X     

Ptc2 YER089C N         X     

Ptc3 YBL056W N         X     

Rck1 YGL158W N         X     

Rpd3 YNL330C N   X           
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Sin3 YOL004W N   X           

Ssn6 YBR112C N   X           

Tup1 YCR084C N   X           

 

 

Supplementary Figure S2. HOG gold standard source agreement.  The histogram shows how 

many HOG proteins appear in the specified number of gold standard sources (i.e. databases or 

HOG literature). 
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Supplementary Figure S3. Short model signaling network without protein-DNA edges.  

Only proteins that interact with other high-confidence predictions are shown (7 are excluded). 
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Long model details and support 

Fig. 3A only displays TFs the first time they are active along a path except for Hog1 and Sko1, 

which are shown a second time along the uppermost regulatory path to emphasize the connection 

between the signaling and regulatory components.  Supplementary Fig. S4 provides the full set 

of TF annotations for the long model.  Fig. 3B does not include the targets Gal4 and Sfp1 

because they are connected to the sensory proteins via intermediate nodes whose scores fell 

below our threshold for inclusion in the model.  Nevertheless, these targets are still well-

connected to the source nodes.  Supplementary Tables S4 and S5 contain the full set of targets 

and internal nodes in the long model as well as the external sources that support them. 

 

To test whether some of the secondary TFs are likely to be controlled transcriptionally instead of 

by signaling cascades, we examined the subset of target TFs that are only active at the late time 

points (15 minutes or later).  Of the 8 TFs meeting this criterion, 5 (Gcn4, Pdr1, Phd1, Sok2, and 

Swi5) are indeed differentially expressed in the long gene expression dataset at or before the 

time point where they are predicted to regulate their bound genes.  These 5 TFs are also 

connected to the sources via paths that include one or more protein-DNA binding edges 

suggesting that they participate in the stress response due to transcriptional activation.  

Specifically, for all 8 of the late TFs, more than 50% of all paths from sources to them include at 

least one protein-DNA interaction.  In contrast, the early TFs (those that are first active before 15 

minutes) tend to be connected via paths with far fewer protein-DNA edges.  Five of the 20 early 

TFs are primarily connected to sources with paths that contain only PPI, and one of them (Skn7) 

is only connected to the sources via PPIs. 
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To further investigate the putative transcriptional activation of the late TFs, we reran SDREM on 

the long expression data but left the protein-DNA binding edges out of the interaction network 

(these interactions were still used when learning the regulatory paths).  Gcn4, Pdr1, and Phd1 are 

no longer predicted in this setting, which suggests that the transcriptional component of the 

interaction network is required for their activation.  This alternate PPI-only long model is still 

significantly representative of the HOG pathway (p-values of 0.0100 and 8.24 × 10
-8

 for the TF 

and signaling protein overlaps with the gold standard, respectively).  The PPI-only model 

constructed contained 51 proteins overall, the same number as the original long model, and they 

had 34 proteins in common (67%). 
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Supplementary Figure S4. Long model active TFs 
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Supplementary Table S4. Long model targets.  See Supplementary Table S1 for column 

descriptions. 

Gene ORF name KEGG Science 

Signaling 

Other 

HOG 

models 

Sorbitol 

screen 

SGD Literature 

Hot1 YMR172W N Y Y 1.72 × 10
-6
 N  

Msn2 YMR037C Y Y Y 8.85  × 10
-3

 N  

Msn4 YKL062W Y Y Y 7.02 × 10
-4
 N  

Sko1 YNL167C N Y Y N/A N  

Gcn4 YEL009C N N N 1.90 × 10
-5
 N NaCl exposure leads to 

translational activation of 

Gcn4 (Goossens et al. 

2001). 

Nrg1 YDR043C N N N 4.78 × 10
-2
 N Nrg1 mutants show 

increased osmotic stress 

resistance (Vyas et al. 

2005). 

Pdr1 YGL013C N N N 3.66 × 10
-5
 N  

Rox1 YPR065W N N N 2.10 × 10
-4
 N Rox1 is one of 20 genes 

that is both directly bound 
by Sko1 and induced at 

least threefold in response 

to osmotic stress (Proft et 

al. 2005). 

Skn7 YHR206W N N N 2.54 × 10
-2
 N Skn7 is a TF associated 

with osmotic stress 

response (Ni et al. 2009). 

Sok2 YMR016C N N N 7.94 × 10
-11

 Y  

Spt23 YKL020C N N N 3.78 × 10
-10

 N  

Sut1 YGL162W N N N 5.57 × 10
-2
 Y  

Tec1 YBR083W N N N 2.74 × 10
-1
 N HOG pathway activation 

inhibits Tec1 DNA 

binding (Shock et al. 
2009). 

Ash1 YKL185W N N N 2.36 × 10
-1
 N  

Dig1 YPL049C N N N 3.11 × 10
-2
 N  

Fhl1 YPR104C N N N N/A N Fhl1 may play a role in 

regulating ribosomal 

protein genes in response 

to osmotic stress, but not 
as significantly as Ifh1 

(Wade et al. 2004). 

Gal4 YPL248C N N N 2.39 × 10
-4
 N  

Gat3 YLR013W N N N 5.76 × 10
-4
 N  

Phd1 YKL043W N N N 1.94 × 10
-2
 N  
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Rap1 YNL216W N N N N/A N Rap1 may play a role in 

regulating ribosomal 
protein genes in response 

to osmotic stress, but not 

as significantly as Ifh1 

(Wade et al. 2004). 

Rpn4 YDL020C N N N 6.00 × 10
-2
 N Rpn4 has not been 

experimentally validated, 

but was previously 

predicted to be a 
significant hyperosmotic 

shock TF (Wu et al. 2008). 

Sfp1 YLR403W N N N 1.00 N Motif correlation suggests 
Sfp1 may have a role in 

osmotic stress response 

(Ni et al. 2009). 

Ste12 YHR084W N N N N/A N When Hog1 or Pbs2 is 
deleted Ste12 is activated 

by osmotic stress 

(O‟Rourke et al. 2002). 

Sum1 YDR310C N N N 2.75 × 10
-1
 N  

Swi4 YER111C N N N 1.75 × 10
-1
 N Temperature sensitivity of 

Swi4 mutants is 
suppressed by sorbitol 

(Madden et al. 1997). 

Swi5 YDR146C N N N 3.89 × 10
-1
 N  

Swi6 YLR182W N N N 7.38 × 10
-1
 N  

Yap5 YIR018W N N N 4.92 × 10
-3
 N  
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Supplementary Table S5. Long model internal nodes.  See Supplementary Table S1 for 

column descriptions. 

Gene ORF name KEGG Science 

Signaling 

Other 

HOG 

models 

Sorbitol 

screen 

SGD Literature 

Cdc24 YAL041W N N Y N/A N  

Hog1 YLR113W Y Y Y 1.00 × 10
-20

 Y  

Ste11 YLR362W Y Y Y N/A Y  

Ste20 YHL007C Y Y Y 6.33 × 10
-1
 Y  

Ypd1 YDL235C Y Y Y N/A N  

Aft1 YGL071W N N N 7.51 × 10
-1
 Y Aft1 has been implicated 

as a TF that activates salt 

stress genes (Miller et al. 

2011) 

Aft2 YPL202C N N N 5.51 × 10
-3
 N Aft2 has been implicated 

as a TF that activates salt 

stress genes (Miller et al. 

2011) 

Asf1 YJL115W N N N 7.96 × 10
-1
 N Asf1 reassembles 

chromatin following 

hyperosmotic-stress-

induced transcription 
(Klopf et al. 2009). 

Bem1 YBR200W N N N 1.00 N Bem1 contributes to 

Ste20‟s function in the 
HOG pathway (Winters 

and Pryciak 2005). 

Cdc28 YBR160W N N N N/A N Osmotic stress decreases 

the kinase activity of the 
Cln3-Cdc28 complex 

(Bellí et al. 2001). 

Cln2 YPL256C N N N 2.15 × 10
-1
 N Cln2 is downregulated in 

osmotic stress conditions 
(Bellí et al. 2001). 

Dig2 YDR480W N N N 2.03 × 10
-5
 N  

Far1 YJL157C N N N 5.83 × 10
-4
 Y  

Kss1 YGR040W N N N 3.86 × 10
-3
 N Although Kss1 is a MAPK 

in the filamentous growth 

pathway, it can also be 
activated by osmotic stress 

(Hao et al. 2008). 

Sir3 YLR442C N N N N/A N Osmotic stress affects Sir3 
telomere binding (Mazor 

and Kupiec 2009). 

Ste7 YDL159W N N N N/A N Ste7 is phosphorylated 

following HOG pathway 
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activation (Shock et al. 

2009). 

Yap6 YDR259C N N N 2.13 × 10
-3
 N Yap6 is a TF associated 

with osmotic stress 

response (Ni et al. 2009). 

Fus3 YBL016W N N N N/A N When Hog1 or Pbs2 is 

deleted Fus3 is activated 
by osmotic stress 

(O‟Rourke et al. 2002). 

Gts1 YGL181W N N N 2.00 × 10
-3
 N  

Rad53 YPL153C N N N N/A N  

Ste4 YOR212W N N N N/A N  

Ste5 YDR103W N N N N/A N Ste5 facilitates osmotic 

stress-related MAPK 
pathway cross-talk in Pbs2 

mutants (Flatauer et al. 

2005). 

Yap7 YOL028C N N N 2.14 × 10
-4
 N  

 

Comparison to HOG pathway literature 

Although many of the edges between correctly predicted HOG gold standard members are 

oriented properly as well (Fig. 2B and 3B), there are cases where the inferred orientation is 

inconsistent with the HOG literature.  Both the short and long models contain the predicted edge 

Ste11→Ste20.  However, the gold standard reveals that Ste20→Ste11 is the true orientation (de 

Nadal and Posas 2010). 

 

Fifteen proteins in the HOG gold standard, including one TF, are only annotated as HOG 

pathway members in a single source (Supplementary Table S3).  Due to this lack of consensus, it 

is reasonable to believe that these proteins are less likely than the others to be involved in the 

HOG pathway or at the very least play peripheral roles.  Interestingly, all 15 proteins are 

excluded from the short and long model predictions, and the gold standard overlaps are 

accordingly more significant when considering only gold standard proteins that are cited in 

multiple sources. 
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SDREM is designed to discover directed cascades between the upstream sources and the inferred 

active TFs.  Therefore, it is unable to recover pathway members that are further upstream of the 

given sources, which explains the absence of Opy2 and Hkr1 in SDREM‟s predictions.  Ptc2, 

Ptc3, Ptp2, and Ptp3 are HOG members that are not between the sources and TFs in the gold 

standard diagrams.  Unlike Ptc2 and Ptc3, Ptp2 and Ptp3 are actually on a small number of 

source-target paths in the short and long models‟ oriented networks, but their node scores are 0, 

signifying that they are only found on low-confidence paths.  Similarly, gold standard members 

Eft1 and Eft2 are not included in either osmotic stress model because they are not on any source-

target paths in these models.  This is consistent with the Science Signaling HOG pathway 

diagram, the only gold standard source that contains these two proteins, in which they are 

downstream of Hog1 but not upstream of any HOG pathway TFs. 

 

Because the HOG gold standard only incorporates literature that provides a network diagram of 

the HOG pathway, we also compared our predictions with other recent HOG pathway evidence 

that is not reflected in the gold standard.  Mas et al (Mas et al. 2009) explored Hog1‟s targeting 

of the RSC complex, a phenomenon missed in the SDREM models.  Zapater et al (Zapater et al. 

2007) studied Hog1‟s role in the recruitment of SAGA, Mediator, and Pol II in osmotic stress 

conditions, and identified Mediator complex genes that exhibit osmotic stress sensitivity.  Of 

these, SDREM predicted GAL11 and MED2 but did not recover PGD1 or SRB4.  Kim and Shah 

(Kim and Shah 2007) identified new Hog1 substrates Krs1, Tdh3, Hsp26, and Shm2 that 

SDREM did not predict. 
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Microscopy and FACS 

Some of the cell boundaries in the microscopy image were ambiguous, and the corresponding 

cells were excluded from our localization analysis.  Supplementary Fig. S5 shows the regions of 

interest (ROIs) that were drawn on the cells that had clearly defined boundaries.  Our supporting 

website contains the original images, images after ImageJ (Abramoff et al. 2004) processing, 

ROI files that can be loaded into ImageJ, and the standard deviations of the pixel intensities of all 

cells included in the analysis. 

 

Although Cin5 exhibited statistically significant differential nuclear localization in the images 

shown in Fig. 4A and Supplementary Fig. S5, this was not the case for all images analyzed.  A 

Cin5 image from 6 minutes after treatment had a p-value of 0.491.  However, additional later 

images from the 40 and 50 minute time points yielded p-values of 5.54 × 10
-6

 and 0.0579, 

respectively, and were more consistent with the results reported in the main text.  This indicates 

that at the earlier time point, at which time SDREM predicts Cin5 is active (Fig. 2A), Cin5 had 

not yet localized to the nucleus in response to the osmotic stress.  We believe the difference in 

timing could be due to differences in experimental procedures and conditions between our 

microscopy analysis and the gene expression dataset.   Whereas we applied 1M sorbitol as the 

osmotic stress, the expression dataset utilized in the short model used 0.4M NaCl (Romero-

Santacreu et al. 2009). 

 

The fluorescence-activated cell sorting experiments validated not only the osmotic stress 

relevance of the SDREM predictions Rox1 and Gcn4, but also the timing of their involvement.  

The elevated Rox1 protein levels were detected 30 minutes after treatment, supporting SDREM‟s 
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predictions that it is active from 8 minutes onward in the short model and as late as 45 minutes in 

the long model.  Gcn4‟s differential protein expression was detected 1 hour after treatment, 

consistent with the prediction that Gcn4 is active at the latest divergence point in the long model. 
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Supplementary Figure S5. Differential nuclear localization after treatment with sorbitol.  

ROIs for cells with discernable boundaries are drawn in purple and numbered. 
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Extended discussion of knockout results 

The genes we deleted were selected from the short model (Fig. 5A), but half of these nodes were 

present in the long network model as well (Supplementary Fig. S7A).  The others were still 

present in some directed source-target paths, but fell below our threshold for inclusion among the 

highest-confidence predictions.  Supplementary Fig. S7B shows the long model‟s regulatory 

paths whose genes significantly overlap with the knockout-affected genes after filtering 

environmental stress response (ESR) genes (Gasch et al. 2000).  Supplementary Table S21 

(Excel spreadsheet) provides the details of these overlaps for the short and long models including 

p-values.  For both the short and long models, the significant knockout overlaps when the 

general stress response genes are not filtered are a superset of the filtered knockouts 

(Supplementary Fig. S6 and S8 and Supplementary Table S21).  In all cases, the number of 

regulatory paths that are enriched with one or more knockouts is significant (Supplementary 

Table S6). 

 

To more directly connect our knockout results to the predicted signaling pathways, we examined 

the TFs controlling the regulatory paths whose genes were significantly affected by the KO 

experiments.  In addition to Asf1 (main text), we found several other cases where the loss of a 

signaling protein affects paths controlled by the downstream TFs in our oriented network.  One 

such example involves Bem1.  The genes that are differentially repressed after BEM1 deletion in 

sorbitol significantly overlap path 7 in the long model (Supplementary Fig. S7B), a path on 

which genes are repressed at 5 minutes and then gradually recover after 15 minutes.  SDREM 

predicts five TFs that are actively controlling genes on this path – Ste12, Tec1, Swi6, Dig1, and 
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Spt23 – and all five are indeed downstream of Bem1 in the oriented network (Supplementary 

Fig. S7A). 

 

The genes affected by the GAL11 KO further validate our predictions.  Differentially expressed 

genes in the gal11Δ mutant significantly overlap with five paths in the short model (Fig. 5B).  Of 

these, all but path 8 are controlled in part by Pdr1 early in the response (Supplementary Fig. S1), 

the only TF downstream of Gal11 in the high-confidence short model network (Fig. 5A).  In fact, 

Pdr1 is directly bound by Gal11 in the oriented network.  Rvs167 is upstream of 15 TFs in the 

short model, which explains why its deletion affects so many regulatory paths (Fig. 5B).  The 

majority of the TFs controlling these paths are downstream of Rvs167 in the oriented network.  

For instance, 6 of the 7 TFs controlling path 1‟s split from path 2 are downstream of Rvs167.  

Additional examples exist as well, and as a whole our knockouts support our predictions in both 

the short and long models. 

 

Although we were able to use the oriented network to explain many of the effects we observed 

when predicted signaling proteins were deleted, in some cases the abundance of paths involving 

the deleted node impaired these efforts.  Especially for proteins like Bem1 that are further 

upstream in the signaling network and directly interact with the sensory proteins (Fig. 5A and 

Supplementary Fig. S7A), there are many TFs that are downstream of them in the network 

(Supplementary Table S21).  Thus, there is ambiguity when determining exactly how the 

deletion impacted gene expression because any of these TFs could have been affected by the 

deletion, but for any given TF there are typically other parallel paths that do not involve the 

deleted node.  Similarly, many regulatory paths are partially controlled by a large number of TFs, 
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and in almost all cases at least some of these TFs are downstream of each of our deletions 

(Supplementary Table S21).  The degree of overlap between the downstream TFs and TFs on a 

regulatory path alone is not predictive of whether the deletion will significantly affect the 

regulatory path.  Furthermore, any errors in the network orientation can impair our ability to 

explain the observed knockout effects. 

 

In general, the differentially activated genes after a knockout overlapped the upper regulatory 

paths and repressed genes overlapped lower paths.  We can explain this phenomenon in many 

cases, but it is nevertheless counterintuitive.  One would expect to see more cases where the 

positive regulators downstream of the deleted protein are deactivated after the knockout, which 

causes the genes on that path to be differentially repressed instead of activated. 
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Supplementary Figure S6. Knockouts affecting short model regulatory paths without ESR 

filtering 
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Supplementary Figure S7.  Knockouts affect downstream expression of genes on the 

recovered regulatory paths in the long model.  A) The positions of the deleted genes that are 

also in the long model.  B) Four knockouts significantly affected the genes assigned to the 

regulatory paths in the long model.  Numbered paths are annotated with the knockouts where we 

found significant overlap between path members and knockout-affected genes after filtering ESR 

genes. 
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Supplementary Figure S8. Knockouts affecting long model regulatory paths without ESR 

filtering 
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Supplementary Table S6. Random regulatory path enrichment.  For the short and long 

model, genes were randomly assigned to regulatory paths and the enrichment of the knockout-

affected genes was calculated (Supplementary Methods).  The number of true regulatory paths 

that are enriched is shown along with the number of times out of 100,000 trials that the specified 

number of random paths are enriched.  Regardless of whether ESR genes are filtered, the 

resulting empirical p-values are significant. 

Model Short Short Long Long 

ESR filtered Yes No Yes No 

Actual paths enriched 7 7 4 5 

0 random paths enriched count 76353 72268 74408 73906 

1 random paths enriched count 21147 24217 22732 23060 

2 random paths enriched count 2359 3246 2692 2863 

3 random paths enriched count 137 263 164 169 

4 random paths enriched count 4 6 4 2 

5 random paths enriched count 0 0 0 0 

6 random paths enriched count 0 0 0 0 

7 random paths enriched count 0 0 0 0 

8 random paths enriched count 0 0 0 0 

9 random paths enriched count 0 0 0 0 

10 random paths enriched count 0 0 N/A N/A 

p-value < 10
-5
 < 10

-5
 4 × 10

-5
 < 10

-5
 

 

Confirmation of TF activity timing 

We previously discussed how the genes affected by BEM1‟s deletion significantly overlap genes 

on path 7 in the long model and how the TFs downstream of Bem1 in the network control this 

path.  Because hundreds of genes are repressed at the split at 5 minutes on this path, at least some 

of these TFs must be exerting a negative regulatory influence.  However, our knockout results 

suggest that a subset of these TFs, possibly including the repressors, also control the restoration 

of gene expression to its steady state levels.  The evidence of this is twofold.  First, DREM 

predicts that some of the TFs controlling the downward path at the 5 minute split also control the 

upward path at 60 minutes when this path diverges into paths 7 and 8 (Supplementary Fig. S4).  
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This subset includes at least one TF traditionally considered to be a transcriptional repressor, 

Dig1 (Kusari et al. 2004).  Moreover, when Bem1 is deleted, genes that are differentially 

repressed significantly overlap path 7, which means they either return to prestress levels more 

slowly than in wild type cells or not at all.  Gene expression levels in the bem1Δ mutant strain 

were measured 30 minutes after sorbitol treatment, which supports the possibility that BEM1‟s 

knockout severs the connection to the downstream TFs that are responsible for gene expression 

recovery after the initial repression at 5 minutes.  Therefore, the BEM1 knockout demonstrates 

that the time at which TFs are activated along this regulatory path was predicted correctly. 

 

Literature support for validated proteins 

We have shown that 3 of the 4 predicted TFs we investigated experimentally – Cin5, Gcn4, and 

Rox1 – localized to the nucleus and/or increased in expression in response to osmotic stress.  

Previous work provides further support for some of these findings and indicates that this 

activation may be important for overcoming sorbitol-induced stress.  For example, cin5Δ mutants 

have been found to exhibit growth sensitivity to osmotic shock, and CIN5 induction peaks 30 to 

60 minutes after exposure to moderate NaCl-induced stress (Nevitt et al. 2004).  Gcn4 has also 

been shown to play a role in salt-induced stress.  Following NaCl exposure, mutations that incite 

Gcn4 activity also increase sensitivity to salt (Goossens et al. 2001).  Osmotic stress mRNA 

synthesis analysis also reported Gcn4 as a regulator of salt stress genes (Miller et al. 2011). 

 

A few of the signaling proteins we validated using knockouts were similarly identified as playing 

diverse roles in the osmotic stress response.  Single and double knockouts revealed that Asf1 

operates together with Rtt109 and in parallel with Arp8 to reassemble chromatin following 
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hyperosmotic stress-induced transcription (Klopf et al. 2009).  Bem1‟s involvement in the HOG 

pathway is tightly coupled with Cdc42, which was selected as a source protein in our study, and 

Ste20, a kinase recovered in both the short and long models.  Binding domain mutations revealed 

that both Bem1 and Cdc42 independently contribute to Ste20‟s function in the HOG pathway.  

Whereas single Bem1 or Cdc42 binding domain mutations yielded only partial defects in 

osmoresistance, a double mutation generated a much stronger phenotype (Winters and Pryciak 

2005).  In both of our network models, we recover the correct orientations of the Bem1→Ste20 

and Cdc42→Ste20 PPI. 

 

Genes affected by the RVS167 knockout in sorbitol had the strongest overlaps with the regulatory 

paths.  Under normal growth conditions, rvs167Δ mutants display slight deregulation of the actin 

cytoskeleton.  However, in the presence of NaCl, the actin cytoskeleton of the mutant strain is 

completely deregulated and exhibits many abnormalities (Bauer et al. 1993).  Although our 

single knockout only weakly confirmed Pcl2‟s involvement in the HOG pathway, a study by Lee 

et al (Lee et al. 1998) provides insight into this result.  They found that a mutant strain in which 

PCL2 was deleted was able to colonize in a high salt environment, but a quintuple deletion of 

Pcl1,2-type cyclins (pcl1Δ pcl2Δ clg1Δ pcl5Δ pcl9Δ) failed to grow on this medium.  

Redundancy among these cyclins obscured the salt sensitivity phenotype in the single deletion.  

The fact that our algorithm correctly recovered Pcl2 as an osmotic stress participant despite the 

weak support in its single knockout affirms our strategy to rely on dynamic gene expression data 

instead of knockouts for model inference.  Interestingly, it was also reported that the Pcl2-Pho85 

kinase phosphorylates Rvs167 (Lee et al. 1998).  Much like RVS167 deletion strains, the 
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quintuple Pcl1,2-type cyclin deletion exhibited abnormalities in the actin cytoskeleton that were 

more pronounced in the presence of salt. 

 

MAPK pathway cross-talk 

Extensive efforts have been made to understand the mechanisms that prevent cross-talk in yeast 

MAPK signaling pathways.  Although the filamentous growth and pheromone-response share 

many members with the HOG pathway (Kanehisa and Goto 2000), activation of the respective 

MAPKs and downstream genes is quite specific.  McClean et al reported that cross-talk between 

the HOG and pheromone pathways is filtered via mutual inhibition between Hog1 and Fus3, the 

MAPK in the pheromone pathway, and suggested that such mutual inhibition may be utilized in 

maintaining specificity of other MAPK pathways as well (McClean et al. 2007).  Despite the 

MAPK pathway specificity in wild type cells (McClean et al. 2007), when Hog1 and the HOG 

pathway MAPK kinase (MAPKK) Pbs2 are mutated, Fus3 is activated by osmotic stress 

(O‟Rourke et al. 2002).  This is also the case for Ste12, a member of the filamentous growth and 

pheromone pathways (O‟Rourke et al. 2002) that was predicted as an osmotic stress responder 

by SDREM.   Similarly, in pbs2Δ strains, Ste5, a pheromone pathway member also included in 

our predictions, facilitates MAPK pathway cross-talk (Flatauer et al. 2005). Interestingly, other 

predictions that are primarily members of the filamentous growth and/or pheromone pathways 

have been reported to be affected by osmotic stress in wild type cells.  These include the 

filamentous growth MAPK Kss1, the MAPKK Ste7, and the TF Tec1 (Hao et al. 2008; Shock et 

al. 2009). 
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Although there is evidence that the six aforementioned proteins have osmotic stress affiliations 

in either wild type or mutant strains, their inclusion in SDREM‟s models suggests that it can 

have difficulty distinguishing between MAPK pathways.  Because our network orientation 

objective function promotes multiple parallel paths between sources and targets and some 

proteins (e.g. Cdc42, Msb2, Sho1, Ste11, Ste20, and Ste50) are common to multiple MAPK 

pathways, the algorithm predicts paths through these other MAPK pathway members.  For 

example, in the final oriented network in the short model all of the most relevant HOG TFs 

(Hot1, Msn2, Msn4, and Sko1) can be connected to the source proteins via short, high-

confidence paths through Fus3.  Thus, the sophisticated cross-talk prevention mechanisms are 

unable to be recovered from the PPI and transcriptional data alone. 

 

Target of rapamycin (TOR) model 

The second stress response we studied with SDREM is the target of rapamycin (TOR) signaling 

pathway.  Although yeast contains two complexes, TORC1 and TORC2, in which the Tor 

proteins are members, only TORC1 is inhibited by the drug rapamycin (Zaman et al. 2008).  

Thus, we used the five TORC1 complex members as the sources in our TOR pathway modeling: 

Kog1, Lst8, Tco89, Tor1, and Tor2 (Zaman et al. 2008) (Supplementary Fig. S9).  Tor2 is only a 

TORC1 complex member in the absence of Tor1, but we include both proteins as sources.  

TORC1 has been shown to respond to not only rapamycin but also caffeine (Kuranda et al. 

2006), nitrogen source quality (Zaman et al. 2008), and other stimuli. 

 

The TOR response expression data (Urban et al. 2007) contained measurements at 20, 30, 60, 90, 

120, and 180 minutes.  Unlike the long osmotic stress expression dataset, the genes differentially 
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expressed in the TOR response generally remained activated or repressed for the full 3 hours and 

did not return to steady state during this period (Supplementary Fig. S10).  Along with the 

extensive TF-gene binding data from cells grown in rich media (MacIsaac et al. 2006), SDREM 

was also provided rapamycin-specific data for 14 TFs previously implicated in the TOR response 

(Harbison et al. 2004). 

 

Despite the prior evidence for these TFs‟ TOR involvement, conventional TOR pathway 

representations contain very limited knowledge of the downstream TFs.  One model (Zaman et 

al. 2008) contains only Gln3, Msn2, Msn4, and Sfp1, and SGD shows no TFs annotated with the 

Gene Ontology (Ashburner et al. 2000) term „TOR signaling cascade‟ 

(http://www.yeastgenome.org/cgi-bin/GO/goTerm.pl?goid=31929).  In contrast, SDREM 

predicts that 23 TFs are active regulators in the TOR pathway (Supplementary Fig. S10), and of 

these only Sfp1 is a member of the previous TOR models.  Nevertheless, we found support for 

17 of these predictions (74%) in the two aforementioned TOR pathway models, rapamycin 

screens (Chan et al. 2000; Xie et al. 2005; Hillenmeyer et al. 2008), a set of genes curated by 

SGD that have a rapamycin resistance phenotype (http://www.yeastgenome.org/cgi-

bin/phenotype/phenotype.fpl?property_value=rapamycin), and/or previous literature 

(Supplementary Table S8).  We refer to this collection of evidence (excluding the literature) as 

our extended gold standard. 
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Supplementary Figure S9. Rapamycin model regulatory paths.  The rapamycin response 

model contains 15 regulatory paths.  Unlike the long osmotic stress model, the differentially 

expressed genes remain highly or lowly expressed after the initial shock for the duration of the 

experiments.  TFs are shown only the first time they appear on a path. 
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Supplementary Figure S10. Rapamycin model signaling network.  The sources, signaling 

proteins, and active TFs in the rapamycin model are displayed.  The TF Gat3 does not appear in 

the figure because it does not directly interact with other predicted pathway members.  Rather, it 

is influenced by upstream proteins via paths containing other proteins that were not deemed to be 

core members of the response. 
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Supplementary Table S8. TOR model targets.  The Zaman et al (Zaman et al. 2008) and SGD 

model columns indicate whether the predicted TF is a member of these TOR pathway 

representations.  In the Xie et al column (Xie et al. 2005), the number of „-‟ symbols indicates 

the degree of rapamycin sensitivity, if any.  The Hillenmeyer et al column provides the lowest p-

value in multiple replicates of another rapamycin screen (Hillenmeyer et al. 2008).  Each „-‟ in 

the Chan et al column indicates an order of magnitude decrease in rapamycin resistance (Chan et 

al. 2000).  The rapamycin phenotype annotations were collected from SGD. 

Gene ORF name Zaman 

et al 

SGD 

model 

Xie 

et al 

Hillenmeyer 

et al 

Chan 

et al 

Rapamycin 

phenotype 

Literature 

Ash1 YKL185W N N N/A 2.69 × 10
-5

 N/A Y  

Dal81 YIR023W N N N/A 1.00 × 10
-20

 N/A N Dal81 was 
implicated as a TF 

active in rapamycin 

response (Bar-

Joseph et al. 2003) 
based on evidence 

in (Scott et al. 

2000). 

Dig1 YPL049C N N N/A 3.18 × 10
-6

 N/A Y  

Fhl1 YPR104C N N N/A N/A N/A N The TOR pathway 

regulation of 
ribosomal protein 

transcription 

involves Fhl1 

(Martin et al. 2004; 
Xiao and Grove 

2009). 

Fkh2 YNL068C N N N/A 5.55 × 10
-17

 N/A N  

Gcn4 YEL009C N N N/A 4.18 × 10
-1

 N/A N Many Gcn4 targets 

are induced by 

rapamycin, and a 
subset of these 

requires Gcn4 for 

full induction 

(Natarajan et al. 
2001). 

Mbp1 YDL056W N N N/A 1.88 × 10
-3

 N/A Y  

Rap1 YNL216W N N N/A N/A N/A N Downstream TOR 
pathway 

transcriptional 

activity controlled 
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by Hmo1 and Fhl1 

appears to be 
dependent on Rap1 

(Xiao and Grove 

2009). 

Rlm1 YPL089C N N N/A 1.51 × 10
-3

 N/A Y The TORC1 
complex is the 

primary target of 

caffeine, and Rlm1 

is implicated in 
caffeine sensitivity 

(Truman et al. 

2009). 

Sfp1 YLR403W Y N N/A 3.05 × 10
-2

 N/A Y  

Sok2 YMR016C N N N/A 3.29 × 10
-1

 N/A N Sok2 mutation 

reverses the 
negative effects of 

rapamycin on 

filamentous growth 
(Cutler et al. 2001). 

Spt23 YKL020C N N N/A 9.52 × 10
-5

 N/A N  

Stb1 YNL309W N N N/A N/A N/A N Stb1 deletion leads 

to partial 
rapamycin 

resistance (Tsang et 

al. 2003). 

Ste12 YHR084W N N - - N/A N/A Y  

Swi4 YER111C N N N/A 3.73 × 10
-2

 N/A N Swi4 is a member 

of the SBF 

transcription 
complex, which 

plays a role in 

caffeine-induced 
cell wall 

remodeling 

(Kuranda et al. 

2006). 

Swi6 YLR182W N N N/A 8.12 × 10
-3

 - - - N Swi6 is a member 

of the SBF 

transcription 
complex, which 

plays a role in 

caffeine-induced 

cell wall 
remodeling 

(Kuranda et al. 

2006). 

Tec1 YBR083W N N N/A 8.54 × 10
-2

 N/A Y Tec1 

overexpression 

reverses the 
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negative effects of 

rapamycin on 
filamentous growth 

(Cutler et al. 2001). 

Gat3 YLR013W N N N/A 3.28 × 10
-3

 N/A N  

Hap1 YLR256W N N N/A N/A N/A N  

Ndd1 YOR372C N N N/A N/A N/A N  

Pdr1 YGL013C N N N/A 1.00 × 10
-3

 N/A N  

Yap5 YIR018W N N N/A 4.56 × 10
-1

 N/A N  

Yap7 YOL028C N N N/A 2.45 × 10
-1

 N/A N  

 

SDREM identifies 25 additional proteins that connect TORC1 to the downstream TFs 

(Supplementary Fig. S9).  Of these, 14 (56%) are present in the extended gold standard or were 

found to have possible links to the TOR pathway in a literature search (Supplementary Table 

S9).  Altogether, the overlap between SDREM‟s TOR predictions and the extended gold 

standard is significant (p-value 2.55 × 10
-3

 using Fisher‟s exact test).  Therefore, even though 

very few predictions were present in the two canonical TOR models and many known TOR 

members were not recovered, SDREM accurately identifies an extended TOR pathway 

representation.  The SDREM model includes many proteins that are traditionally primarily 

associated with other signaling pathways but are affected by rapamycin, for example Dig1, and 

explains how they may in fact be involved in the rapamycin response. 
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Supplementary Table S9. TOR model internal nodes.  See Supplementary Table S8 for 

column descriptions. 

Gene ORF name Zaman 

et al 

SGD 

model 

Xie 

et al 

Hillenmeyer 

et al 

Chan 

et al 

Rapamycin 

phenotype 

Literature 

Act1 YFL039C N N - - - - N/A N/A Y  

Bem1 YBR200W N N N/A 1.62 × 10
-2

 - - - N  

Cdc28 YBR160W N N N/A N/A N/A N TORC1 mediates 
Cdc5, which 

activates Cdc28 

(Nakashima et al. 
2008). 

Cln2 YPL256C N N N/A 1.47 × 10
-8

 N/A N Rapamycin 

treatment reduces 

Cln2 levels 
(Zinzalla et al. 

2007). 

Fus3 YBL016W N N N/A N/A N/A Y  

Gal11 YOL051W N N N/A 3.01 × 10
-1

 N/A Y  

Hek2 YBL032W N N N/A 4.82 × 10
-9

 N/A N  

Rsp5 YER125W N N N/A N/A N/A N Rsp5 deletion 
blocks the effects 

of rapamycin on 

Hxt1, a TOR 

signaling target 
(Schmelzle et al. 

2004). 

Sir3 YLR442C N N N/A N/A N/A Y  

Slt2 YHR030C N N - - - 1.82 × 10
-3

 - - - - Y  

Srb2 YHR041C N N N/A 7.73 × 10
-3

 - - N  

Ste4 YOR212W N N N/A N/A N/A N Rapamycin effects 
have been shown to 

be Ste4-dependent 

(Zhu and Wang 

2009). 

Ste5 YDR103W N N N/A N/A N/A N Rapamycin effects 

have been shown to 

be Ste5-dependent 
(Zhu and Wang 

2009). 

Tsc11 YER093C N Y N/A N/A N/A N  

Cdc24 YAL041W N N N/A N/A N/A N  

Dig2 YDR480W N N N/A 3.52 × 10
-1

 N/A N  

Far1 YJL157C N N N/A 8.82 × 10
-2

 N/A N  

Med6 YHR058C N N N/A N/A N/A N  

Myo4 YAL029C N N N/A 2.54 × 10
-1

 N/A N  

Rgr1 YLR071C N N N/A N/A N/A N  
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Rpo21 YDL140C N N N/A N/A N/A N  

She2 YKL130C N N N/A 1.60 × 10
-2

 N/A N  

Srb4 YER022W N N N/A N/A N/A N  

Srb5 YGR104C N N N/A 2.36 × 10
-1

 N/A N  

Srb7 YDR308C N N N/A N/A N/A N  

 

Arabidopsis thaliana immune response model 

Although the gene expression measurements span nearly one week, the inferred regulatory paths 

in the SDREM model of Arabidopsis response to Hyaloperonospora arabidopsidis (Hpa) 

indicate that the transcriptional changes are sustained over this long period (Supplementary Fig. 

S11).  Many of the predicted active TFs are active at numerous splits along the regulatory paths.  

We found that these TFs are very strongly connected to the Hpa effectors (the pathogen proteins 

used as the sources) in the signaling network and hence have strong activity priors.  However, 

they bind relatively few genes on some of the regulatory paths so their high activity scores are 

primarily due to the strong priors (which are invariant across the different splits) as opposed to 

the behavior of their bound genes at each split.  The signaling pathways in the SDREM model 

are shown in Supplementary Fig. S12, and Supplementary Table S10 provides the full model 

including the sources and SDREM predictions. 

 

Mukhtar et al examined insertion mutants of 17 Arabidopsis proteins that are targeted by both 

Hpa and the Pseudomonas syringae bacterium (Mukhtar et al. 2011).  Fifteen of these exhibited 

enhanced host susceptibility or resistance to infection by various Hpa isolates, and 6 of the 

validated proteins – APC8, AT3G27960, ATTCP15, CSN5A, LSU2, and TCP14 – were 

predicted by SDREM (p-value 7.29 × 10
-8

, Fisher‟s exact test).  Another 7 of SDREM‟s 

predictions – internal nodes HUB1, MOS6, and NIMIN1 as well as targets TGA2, TGA3, 
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WRKY53, and WRKY60 – were annotated as “defense response” proteins in Gene Ontology 

(Ashburner et al. 2000). 

 

Supplementary Figure S11. Arabidopsis thaliana regulatory paths. 
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Supplementary Figure S12. Arabidopsis thaliana signaling pathways.  The sources (red 

nodes) are Hpa effectors.  The remaining proteins are predicted Arabidopsis immune responders. 
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Supplementary Table S10. SDREM Arabidopsis thaliana immune response model.  The 

Role column designates whether the gene is a source (Hpa effector that was given as input), 

internal signaling node, or TF target.  Some of the effectors that belong to the same family were 

grouped in the original data. 

Gene Locus / id Role 

ATR1 family ATR1_group Source 

ATR13 family ATR13_group Source 

HARXL10 family HARXL10_WACO9 Source 

HARXL106 family HARXL106_group Source 

HARXL108 HARXL108 Source 

HARXL11 HARXL11 Source 

HARXL119 HARXL119 Source 

HARXL12 HARXL12 Source 

HARXL13 HARXL13 Source 

HARXL14 HARXL14 Source 

HARXL143 HARXL143 Source 

HARXL144 HARXL144 Source 

HARXL145 HARXL145 Source 

HARXL146 HARXL146 Source 

HARXL147 HARXL147 Source 

HARXL148 HARXL148 Source 

HARXL149 HARXL149 Source 

HARXL15 HARXL15 Source 

HARXL16 HARXL16 Source 

HARXL17 family HARXL17_WACO9 Source 

HARXL18 HARXL18 Source 

HARXL21 HARXL21 Source 

HARXL22 HARXL22 Source 

HARXL23 HARXL23 Source 

HARXL36 HARXL36 Source 

HARXL39 HARXL39 Source 

HARXL4 HARXL4 Source 

HARXL40 family HARXL40_group Source 

HARXL42 HARXL42 Source 

HARXL44 HARXL44 Source 

HARXL45 family HARXL45_group Source 

HARXL47 family HARXL47_group Source 

HARXL56 HARXL56 Source 



46 

HARXL57 HARXL57 Source 

HARXL59 HARXL59 Source 

HARXL60 HARXL60 Source 

HARXL62 HARXL62 Source 

HARXL63 HARXL63 Source 

HARXL64 HARXL64 Source 

HARXL65 HARXL65 Source 

HARXL67 HARXL67 Source 

HARXL68 HARXL68 Source 

HARXL69 HARXL69 Source 

HARXL70 HARXL70 Source 

HARXL72 HARXL72 Source 

HARXL73 HARXL73 Source 

HARXL74 HARXL74 Source 

HARXL75 family HARXL75_WACO9 Source 

HARXL76 family HARXL76_WACO9 Source 

HARXL77 family HARXL77_group Source 

HARXL78 family HARXL78_group Source 

HARXL79 HARXL79 Source 

HARXL8 HARXL8 Source 

HARXL80 family HARXL80_group Source 

HARXL89 HARXL89 Source 

HARXLCRN15 HARXLCRN15 Source 

HARXLCRN17 HARXLCRN17 Source 

HARXLCRN4 HARXLCRN4 Source 

HARXLL108 HARXLL108 Source 

HARXLL148 HARXLL148 Source 

HARXLL169 HARXLL169 Source 

HARXLL429 HARXLL429 Source 

HARXLL431 family HARXLL431_WACO9 Source 

HARXLL437 HARXLL437 Source 

HARXLL440 HARXLL440 Source 

HARXLL441 HARXLL441 Source 

HARXLL445 family HARXLL445_group Source 

HARXLL446 HARXLL446 Source 

HARXLL449 HARXLL449 Source 

HARXLL455 HARXLL455 Source 

HARXLL464 HARXLL464 Source 

HARXLL468 HARXLL468 Source 

HARXLL470 family HARXLL470_WACO9 Source 

HARXLL480 HARXLL480 Source 
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HARXLL492 HARXLL492 Source 

HARXLL493 HARXLL493 Source 

HARXLL495 HARXLL495 Source 

HARXLL497 HARXLL497 Source 

HARXLL515 HARXLL515 Source 

HARXLL516 family HARXLL516_WACO9 Source 

HARXLL517 family HARXLL517_WACO9 Source 

HARXLL518 family HARXLL518_WACO9 Source 

HARXLL519 family HARXLL519_WACO9 Source 

HARXLL520 family HARXLL520_WACO9 Source 

HARXLL60 HARXLL60 Source 

HARXLL62_A HARXLL62_A Source 

HARXLL62_B HARXLL62_B Source 

HARXLL73 HARXLL73 Source 

HARXLL73 family HARXLL73_group Source 

HARXLL91 HARXLL91 Source 

HARXLL94 HARXLL94 Source 

AGL20 AT2G45660 Internal 

APC8 AT3G48150 Internal 

ARR14 AT2G01760 Internal 

AT1G22630 AT1G22630 Internal 

AT1G49850 AT1G49850 Internal 

AT1G72030 AT1G72030 Internal 

AT2G39100 AT2G39100 Internal 

AT2G41090 AT2G41090 Internal 

AT3G08530 AT3G08530 Internal 

AT3G19120 AT3G19120 Internal 

AT3G27960 AT3G27960 Internal 

AT3G56270 AT3G56270 Internal 

AT4G12450 AT4G12450 Internal 

AT4G22720 AT4G22720 Internal 

AT4G24840 AT4G24840 Internal 

AT5G22310 AT5G22310 Internal 

AT5G28690 AT5G28690 Internal 

AT5G52650 AT5G52650 Internal 

ATBZIP63 AT5G28770 Internal 

ATCAL4 AT2G41100 Internal 

ATHSP23.6-MITO AT4G25200 Internal 

ATMYB70 AT2G23290 Internal 

ATR1 ATR1 Internal 

ATR13 ATR13 Internal 



48 

ATTCP15 AT1G69690 Internal 

AUG1 AT2G41350 Internal 

CAM4 AT1G66410 Internal 

CAM6 AT5G21274 Internal 

CAM7 AT3G43810 Internal 

CIPK9 AT1G01140 Internal 

CML9 AT3G51920 Internal 

CSN5A AT1G22920 Internal 

CYTC-1 AT1G22840 Internal 

FTSH2 AT2G30950 Internal 

GA4 AT1G15550 Internal 

GRX480 AT1G28480 Internal 

HARXL10 HARXL10 Internal 

HARXL106 HARXL106 Internal 

HARXL40 HARXL40 Internal 

HARXL45 HARXL45 Internal 

HARXL47 HARXL47 Internal 

HARXLL445 HARXLL445 Internal 

HARXLL470 HARXLL470 Internal 

HARXLL518 HARXLL518 Internal 

HUB1 AT2G44950 Internal 

HVE AT2G02560 Internal 

IAA11 AT4G28640 Internal 

IMPA-6 AT1G02690 Internal 

IXR11 AT1G62990 Internal 

LSU2 AT5G24660 Internal 

MOS6 AT4G02150 Internal 

NIMIN1 AT1G02450 Internal 

PI AT5G20240 Internal 

PSAD-2 AT1G03130 Internal 

RBCS2B AT5G38420 Internal 

ROXY2 AT5G14070 Internal 

SHH2 AT3G18380 Internal 

SHP1 AT3G58780 Internal 

TCP14 AT3G47620 Internal 

UFO AT1G30950 Internal 

UNE12 AT4G02590 Internal 

WAVH2 AT5G65683 Internal 

WRKY36 AT1G69810 Internal 

AG AT4G18960 Target 

AGF1 AT4G35390 Target 
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AGL15 AT5G13790 Target 

AHL15 AT3G55560 Target 

AP2 AT4G36920 Target 

ATBZIP53 AT3G62420 Target 

AT-HSFC1 AT3G24520 Target 

CO AT5G15840 Target 

DPA AT5G02470 Target 

E2F3 AT2G36010 Target 

HY5 AT5G11260 Target 

KNAT1 AT4G08150 Target 

LFY AT5G61850 Target 

PIL5 AT2G20180 Target 

POC1 AT1G09530 Target 

SEP3 AT1G24260 Target 

TGA2 AT5G06950 Target 

TGA3 AT1G22070 Target 

WRKY53 AT4G23810 Target 

WRKY60 AT2G25000 Target 

 

Physical Network Models and ResponseNet comparison 

PNM predicts a very large set of proteins, 445 for the short expression data and 309 for the long 

expression data.  Even though it predicts over 6 times more proteins than SDREM in both cases, 

it recovers only 2 or 3 more gold standard proteins than SDREM, resulting in less significant 

overlaps.  The noteworthy omission of Hog1 in the PNM network constructed with the long 

expression data and insignificant overlap between the predicted TFs and gold standard TFs 

indicate the HOG pathway is not well-represented even in the large predicted network.  In the 

main text, we anecdotally demonstrated 7 interactions from the HOG pathway that SDREM 

oriented correctly in the short model.  Of these 7, PNM correctly orients the edges Ste50→Ste11, 

Sho1→Pbs2, Pbs2→Hog1, and Hog1→Sko1 but does not include the edges Sho1→Ste11, 

Ste11→Pbs2, or Hog1→Hot1 in its pathways.  Although this sample is far too small to draw any 

broad conclusions, these results may suggest that PNM can correctly orient critical HOG 
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pathway edges but struggles to identify the relevant nodes and interactions relative to SDREM 

(Table 1). 

 

When run with the default settings, ResponseNet‟s capping parameter is set to 0.7, which 

controls the maximum edge weight in the network.  The majority of the edge weights in our 

interaction network are ≥ 0.7 so this leads to a network where most of the edges have the same 

maximum weight of 0.7.  Consequently, ResponseNet struggles to predict internal signaling 

nodes in this setting and includes only 4 such proteins in its network.  Hog1 is not among those 4 

proteins, and the large set of predicted TFs does not significantly overlap the HOG gold standard 

TFs (Table 1). 

 

Therefore, we varied the capping parameter from 0.6 (the smallest value tested in Yeger-Lotem 

et al (Yeger-Lotem et al. 2009)) to 1.0 (the maximum possible value) and the gamma parameter, 

which generally controls the network size, from 5 to 20 (the recommended range) and reran 

ResponseNet on the short expression data.  We found that the internal node predictions were 

significantly better under different settings.   For example, when gamma is 10 and capping is 0.9, 

4 of the 8 predicted signaling proteins are in the HOG pathway (p-value 5.99 × 10
-8

), including 

Hog1. 

 

Surprisingly, the TF predictions are independent of the choice of gamma and are affected only by 

the capping parameter (Supplementary Table S11).  In all cases, ResponseNet recovers between 

0 and 2 known HOG pathway TFs, and the overlaps with the HOG TFs are insignificant.  One 

possible explanation is that ResponseNet cannot analyze gene expression dynamics, which 
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impairs its ability to recover the HOG TFs.  SDREM works directly with the temporal expression 

values, which enables it to identify time points when a subset of a TF‟s bound genes are 

differentially expressed (diverging from genes not bound by the TF).  These patterns may not 

emerge in a static dataset. 

 

Supplementary Table S11.  ResponseNet TF predictions under various parameter settings.  

Gamma (default value 10) and capping (default value 0.7) are the ResponseNet parameters that 

were varied. 

Gamma Capping Predicted TFs Gold standard TFs TF overlap TF significance 

5 0.6 59 7 2 0.655 

5 0.7 57 7 2 0.632 

5 0.8 5 7 1 0.162 

5 0.9 5 7 1 0.162 

5 1 6 7 0 1.000 

10 0.6 59 7 2 0.655 

10 0.7 57 7 2 0.632 

10 0.8 5 7 1 0.162 

10 0.9 5 7 1 0.162 

10 1 6 7 0 1.000 

15 0.6 59 7 2 0.655 

15 0.7 57 7 2 0.632 

15 0.8 5 7 1 0.162 

15 0.9 5 7 1 0.162 

15 1 6 7 0 1.000 

20 0.6 59 7 2 0.655 

20 0.7 57 7 2 0.632 

20 0.8 5 7 1 0.162 

20 0.9 5 7 1 0.162 

20 1 6 7 0 1.000 

 

GeneReg comparison 

GeneReg is an algorithm that uses time-lagged linear regression to extract potential regulatory 

relationships from time series gene expression data (Huang et al. 2010).  We selected GeneReg 
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in particular because similar approaches that rely on time-lagged correlation (Schmitt et al. 2004; 

Balasubramaniyan et al. 2005) or time-lagged mutual information (Zoppoli et al. 2010) either do 

not make their software available (Schmitt et al. 2004; Balasubramaniyan et al. 2005) or do not 

scale to handle thousands of genes information (Zoppoli et al. 2010).  We ran GeneReg on the 

long expression dataset since the temporal patterns in this dataset, which captures the response 

and recovery, should be easier for a time-lagged method to detect.  However, when we evaluated 

the TFs that GeneReg predicted to be most active in the stress response at several thresholds, its 

predictions did not significantly overlap with the HOG gold standard TFs (Supplementary Table 

S12).  Note that some of these top-ranked TFs were in the osmotic stress screens even though 

they are not gold standard TFs, and Msn4 ranked just outside of the top 28 TFs.  Even in the best 

case, algorithms that rely on expression data alone can only recover TFs that are differentially 

expressed.  In contrast, we found evidence that only a handful of TFs are transcriptionally 

activated in the long model, and in the short model even fewer HOG TFs are differentially 

expressed, which emphasizes the benefits of jointly modeling the upstream interaction networks 

and the dynamic expression data like SDREM. 

 

Supplementary Table S12. Evaluation of GeneReg TF predictions. At various thresholds, the 

top-ranked TFs from GeneReg do not significantly overlap with the HOG TFs.  The SDREM TF 

predictions (28 targets and 6 TFs in the set of internal nodes) from the long model are shown for 

comparison. 

Algorithm SDREM GeneReg GeneReg GeneReg 

Predicted TFs 34 10 28 46 

Gold standard TFs 7 7 7 7 

TF overlap 4 1 2 3 

TF significance 0.0161 0.302 0.249 0.194 
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Parameter selection and robustness 

Whenever possible, SDREM‟s parameters were selected in accordance with existing biological 

data or computational approaches.  We used condition-specific osmotic stress data to obtain an 

estimate for the active TF influence parameter, which represents the portion of bound genes that 

are expected to be affected by an active TF.  The TFs Hot1 and Sko1 are the two HOG pathway 

TFs for which we have condition-specific binding data (Capaldi et al. 2008), and both are known 

to be active in the osmotic stress response.  79% of the genes bound by Hot1 are differentially 

expressed in both the short osmotic stress expression data and the long expression data.  

Likewise, 79% of genes bound by Sko1 are affected in the short expression data and 68% in the 

long expression dataset.  Therefore, we set this parameter‟s default value to 80%. 

 

Several parameters such as the path length, PPI edge weight threshold, and number of top paths 

used for scoring were selected from a detailed analysis we performed on yeast PPI networks 

(Gitter et al. 2011).  We showed that using a path length of 5 is a reasonable compromise 

between coverage and computational complexity, that edges with a weight of less than 0.6 are 

generally low-confidence interactions that have not been reported multiple times or detected 

using a high-confidence experimental technology and are thus less beneficial for pathway 

reconstruction, and that by focusing on the smaller set of the top 100 paths we can achieve better 

precision and recall compared to using more paths.  In this previous study, the number of targets 

in the network was fixed, which suggested using a fixed threshold for the number of top paths.  

The number of paths considered by SDREM is equal to 5 times the number of targets instead of 

the fixed value of 100 to account for the fluctuating number of targets over all iterations.  In the 

short model, this flexibility results in using between 95 and 140 top paths. 
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The protein-DNA edge weights (Supplementary Table S19) are motivated by the ResponseNet 

(Yeger-Lotem et al. 2009) and PPI network weighting schemes (Supplementary Methods).  In 

Supplementary Materials of (Hillenmeyer et al. 2008), the authors recommend a p-value cutoff 

of 10
-5

 to control for multiple hypothesis testing across genes that are sensitive in any of the 178 

conditions tested in the homozygous collection.  However, because we are only interested in 

deletion strains that exhibit a fitness defect in one specific condition, we used a less stringent 

threshold of 10
-4

. 

 

The differential expression thresholds differ for the short and long osmotic stress expression 

datasets due to disparities in the respective experimental frameworks.  The two studies use 

different microarrays, osmostic stresses, sampling times, etc. (Gasch et al. 2000; Romero-

Santacreu et al. 2009) leading to expression profiles that are not directly comparable.  A lower 

differential expression threshold was used for the long osmotic stress expression data because 

this dataset exhibited lower magnitude fold changes.  Using a lower expression threshold enabled 

us to analyze roughly the same number of genes in both osmotic stress expression datasets.  

Specifically, a log2 fold change threshold of 1 was used for the short osmotic stress data and 0.5 

was used for the long expression data instead. 

 

The activity score and node score thresholds were selected arbitrarily, but were found to yield 

good false positive rates.  For the short model the target TF false positive rate is 13.3% and the 

internal node false positive rate is 0.6%.  For the long model the target TF false positive rate is 

21.2% and the internal node false positive rate is 0.3%.  If we use both the HOG gold standard 
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and osmotic stress screens to define the positive and negative genes, the false positive rates are 

nearly identical. 

 

For those parameters that could not be directly estimated from biological data, we made an initial 

choice of value based on our intuition of the algorithm‟s behavior.  We then tested the robustness 

of this selection to small fluctuations in the parameter value (where robustness is measured in 

terms of the overlap in the outcomes between different parameter values), following the 

approach of (Kim et al. 2011).  These parameters were consistent across all SDREM runs and are 

suitable for analysis of other conditions or organisms. 

 

Supplementary Table S13 describes the 8 parameters that were varied during the robustness 

testing, all of which was performed using the short osmotic stress expression data.  In addition to 

the 2 runs per parameter (using a lower/higher value than the default), we ran SDREM with an 

unweighted version of our protein-DNA interaction network to observe whether our weighting 

scheme enhanced SDREM‟s predictions.  The topology of this unweighted network was identical 

to the original protein-DNA interaction network, but the weights were uniformly set to 1.  The 

PPI edge weights were not changed because their weights have been justified previously (Gitter 

et al. 2011). 

 

Although varying these parameters does have an effect on the SDREM output, the core of the 

predicted network remains the same.  Nearly all of the new runs generate fewer predictions than 

the baseline run, but in the majority of the runs over 90% of the new predictions are also found in 

the baseline predictions (Supplementary Table S14).  The notable exception is the set of 



56 

predictions from the unweighted protein-DNA interaction network, which has a greater effect 

than varying the algorithm‟s parameters.  Only 25 of the 58 baseline short model predictions also 

appear in this run, lower than any of the overlaps obtained when only the parameters are varied.  

Supplementary Fig. S13 shows that out of the 58 proteins in the baseline short model, 31% are 

still predicted in all 16 runs where a parameter is varied and 79% are predicted in at least half of 

the runs.  In contrast, the majority (56%) of the proteins that are predicted only when the 

parameters are varied appear in the output of a single run. 

 

When varying the parameters, the overlap between SDREM‟s predictions and the HOG gold 

standard is significant in all cases and comparable to the overlap obtained when using the 

original parameters (Supplementary Tables S15 and S16).  However, once again we observe that 

the run that uses the unweighted network is an outlier and performs markedly worse than the 

baseline prediction.  Only 6 signaling proteins are predicted, and Hog1 is not among them, 

confirming that the protein-DNA edge weights we assigned improve predictive capabilities. 
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Supplementary Table S13. Parameters perturbed for robustness testing.  In addition to the 

protein-DNA network weight, the 8 parameters below were varied for robustness testing.  The 

baseline run uses the default value for all parameters. 

Run name Parameter being varied Default value New value 

baseline None   

active.tf.influence.0.7 Percent of bound genes that are influenced by a 

TF that is active in the stress response 

80% 70% 

active.tf.influence.0.9 Percent of bound genes that are influenced by a 
TF that is active in the stress response 

80% 90% 

dist.tfs.25 Number of TFs used to build random activity 

score distribution 

50 25 

dist.tfs.100 Number of TFs used to build random activity 
score distribution 

50 100 

dist.thresh.0.4 Percentile in the random activity score distribution 

that real TF scores must exceed 

50
th

 40
th

 

dist.thresh.0.6 Percentile in the random activity score distribution 
that real TF scores must exceed 

50
th

 60
th

 

min.prior.0.005 Minimum activity prior allowed 0.01 0.005 

min.prior.0.05 Minimum activity prior allowed 0.01 0.05 

node.thresh.0.005 Node score threshold 0.01 0.005 

node.thresh.0.05 Node score threshold 0.01 0.05 

random.target.ratio.0.5 Number of random targets added to network 

during target scoring per real target 

1 0.5 

random.target.ratio.2 Number of random targets added to network 

during target scoring per real target 

1 2 

target.thresh.0.7 Target score distribution threshold 0.8 0.7 

target.thresh.0.9 Target score distribution threshold 0.8 0.9 

top.paths.100 Number of top-ranked paths used to calculate 

target and node scores in the network 

5 times 

number of 
targets 

100 

top.paths.1000 Number of top-ranked paths used to calculate 

target and node scores in the network 

5 times 

number of 

targets 

1000 

pdi.no.weight Protein-DNA interaction network edge weights See text See text 

 



58 

Supplementary Table S14. Baseline overlap during perturbation testing.  The number of 

proteins predicted by the baseline model and the runs in which a single parameter was varied.  

The five sources are present in all models and are not included in the counts.  Overlap 

percentages are calculated with respect to the baseline („Baseline overlap‟) and the robustness 

testing run („Run overlap‟). 

Run name Baseline 

predictions 

Run 

predictions 

Overlap Baseline 

overlap 

Run overlap 

active.tf.influence.0.7 58 46 41 71% 89% 

active.tf.influence.0.9 58 28 28 48% 100% 

dist.tfs.25 58 41 36 62% 88% 

dist.tfs.100 58 52 41 71% 79% 

dist.thresh.0.4 58 53 49 84% 92% 

dist.thresh.0.6 58 36 36 62% 100% 

min.prior.0.005 58 51 47 81% 92% 

min.prior.0.05 58 50 47 81% 94% 

node.thresh.0.005 58 57 55 95% 96% 

node.thresh.0.05 58 39 32 55% 82% 

random.target.ratio.0.5 58 58 55 95% 95% 

random.target.ratio.2 58 52 49 84% 94% 

target.thresh.0.7 58 58 55 95% 95% 

target.thresh.0.9 58 42 41 71% 98% 

top.paths.100 58 53 49 84% 92% 

top.paths.1000 58 68 45 78% 66% 

pdi.no.weight 58 35 25 43% 71% 
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Supplementary Figure S13.  Histogram of the number of occurrences of each protein 

across all perturbation testing.  The number of runs specifies how many models include a 

particular protein.  The frequency provides the number of proteins that fall into each bin.   For 

example, 23 proteins are predicted in only a single run.  The „pdi.no.weight‟ run is not included 

in the counts.  The five sources appear in all models and are also not counted. 

 



60 

Supplementary Table S15.  Robustness testing signaling protein overlap significance.  The 

significance of the overlap between the HOG gold standard signaling proteins (those that are not 

sources or TFs) and signaling proteins in the SDREM models.  The total predictions include the 

signaling proteins and TFs, but not the five sources. 

Run name Total 

predictions 

Predicts 

Hog1 

Predicted 

signaling 

Gold standard 

signaling 

Signaling 

overlap 

Signaling 

significance 

baseline 58 Y 30 30 6 1.11 × 10
-8

 

active.tf.influence.0.7 46 Y 18 30 6 3.65 × 10
-10

 

active.tf.influence.0.9 28 Y 11 30 4 2.79 × 10
-7

 

dist.tfs.25 41 Y 22 30 6 1.44 × 10
-9

 

dist.tfs.100 52 Y 16 30 5 1.80 × 10
-8

 

dist.thresh.0.4 53 Y 21 30 6 1.05 × 10
-9

 

dist.thresh.0.6 36 Y 17 30 5 2.55 × 10
-8

 

min.prior.0.005 51 Y 21 30 6 1.05 × 10
-9

 

min.prior.0.05 50 Y 22 30 6 1.44 × 10
-9

 

node.thresh.0.005 57 Y 30 30 6 1.11 × 10
-8

 

node.thresh.0.05 39 Y 11 30 4 2.79 × 10
-7

 

random.target.ratio.0.5 58 Y 31 30 6 1.37 × 10
-8

 

random.target.ratio.2 52 Y 21 30 6 1.05 × 10
-9

 

target.thresh.0.7 58 Y 32 30 6 1.68 × 10
-8

 

target.thresh.0.9 42 Y 20 30 5 6.30 × 10
-8

 

top.paths.100 53 Y 29 30 6 8.94 × 10
-9

 

top.paths.1000 68 Y 28 30 8 1.19 × 10
-12

 

pdi.no.weight 35 N 6 30 2 4.68 × 10
-4

 

 



61 

Supplementary Table S16. Robustness testing TF overlap significance.  The significance of 

the overlap between the HOG gold standard TFs and the SDREM model TFs.  The total 

predictions include the signaling proteins and TFs, but not the five sources. 

Run name Total 

predictions 

Predicted TFs Gold standard 

TFs 

TF 

overlap 

TF significance 

baseline 58 28 7 4 0.008 

active.tf.influence.0.7 46 28 7 4 0.008 

active.tf.influence.0.9 28 17 7 4 0.001 

dist.tfs.25 41 19 7 4 0.002 

dist.tfs.100 52 36 7 4 0.020 

dist.thresh.0.4 53 32 7 5 0.001 

dist.thresh.0.6 36 19 7 4 0.002 

min.prior.0.005 51 30 7 4 0.010 

min.prior.0.05 50 28 7 4 0.008 

node.thresh.0.005 57 27 7 4 0.007 

node.thresh.0.05 39 28 7 4 0.008 

random.target.ratio.0.5 58 27 7 4 0.007 

random.target.ratio.2 52 31 7 5 0.001 

target.thresh.0.7 58 26 7 4 0.006 

target.thresh.0.9 42 22 7 4 0.003 

top.paths.100 53 24 7 4 0.004 

top.paths.1000 68 40 7 5 0.004 

pdi.no.weight 35 29 7 5 0.001 

 

Convergence properties 

Supplementary Tables S17 and S18 depict how the predicted TFs and internal nodes change over 

the 10 iterations.  The long model best demonstrates how SDREM converges in practice 

(Supplementary Table S18).  In the final 3 iterations, the same 51 proteins are predicted.  The 

short model nearly converges after 10 iterations but is slightly less stable than the long model.  

Of the 58 predictions made in the final iteration, 54 are also predicted at the preceding iteration. 

 

There is no single iteration that yields the most significant overlaps across all three metrics (gold 

standard signaling proteins, gold standard TFs, and gold standard with screens) for either model.  

When considering the osmotic stress screens, iteration 2 is best for the short model and iteration 
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1 is best for the long model.  However, the long model in particular exhibits improvement over 

time with respect to the gold standard, and the long model TFs overlap most strongly with the 

gold standard at the final iteration.  This highlights the reason we do not stop after only a few 

iterations.  Initially, many of the predicted TFs are not connected to the upstream signaling 

pathways and some of the predicted signaling nodes are isolated from the core pathways.  

Because our goal is to recover interpretable models that may suggest mechanistic explanations of 

how each predicted protein is involved in the response (e.g. how a TF is activated), we iterate 

and prune predictions that are not jointly supported by the signaling pathways and transcriptional 

dynamics.  Consequently, SDREM tends to predict fewer proteins as the iterations proceed, 

especially fewer TFs. 
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Supplementary Table S17.  Short model convergence.  The table shows the number of 

predictions made at each iteration of SDREM when run on the short osmotic stress expression 

data and the overlaps with the osmotic stress evidence.  The HOG gold standard was used to 

evaluate the TFs and internal predictions individually and the combined osmotic stress evidence 

(HOG pathway members and osmotic stress screen hits) was used to evaluate the TFs and 

internal nodes together. 

Iteration 1 2 3 4 5 6 7 8 9 10 

Total 

predictions 

69 46 44 59 51 49 49 46 57 58 

Predicted 

internal 

29 17 16 21 19 21 19 18 29 30 

Gold 

standard 

internal 

30 30 30 30 30 30 30 30 30 30 

Internal 

overlap 

6 6 6 6 6 6 6 6 5 6 

Internal 

significance 
8.94 × 

10-9
 

2.44 

× 10-10
 

1.59 

× 10-10
 

1.05 

× 10-9
 

5.31 

× 10-10
 

1.05 

× 10-9
 

5.31 

× 10-10
 

3.65 

× 10-10
 

4.66 

× 10-7
 

1.11 

× 10-8
 

Predicted 

TFs 

40 29 28 38 32 28 30 28 28 28 

Gold 

standard 

TFs 

7 7 7 7 7 7 7 7 7 7 

TF overlap 5 5 5 5 5 5 4 5 4 4 

TF 

significance 

0.00368 7.37 

× 10-4
 

6.16 

× 10-4
 

0.00286 0.00122 6.16 

× 10-4
 

0.0100 6.16 

× 10-4
 

0.00770 0.00770 

Gold 

standard 

or screen 

hit 

1167 1167 1167 1167 1167 1167 1167 1167 1167 1167 

Combined 

overlap 

28 21 19 23 22 21 20 19 20 21 

Combined 

significance 

1.85 

× 10-4
 

1.67 

× 10-4
 

8.00 

× 10-4
 

0.00132 3.21 

× 10-4
 

4.87 

× 10-4
 

0.00138 0.001529 0.0105 0.00588 
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Supplementary Table S18.  Long model convergence.  The table shows the number of 

predictions made at each iteration of SDREM when run on the long osmotic stress expression 

data and the overlaps with the osmotic stress evidence.  The HOG gold standard was used to 

evaluate the TFs and internal predictions individually and the combined osmotic stress evidence 

(HOG pathway members and osmotic stress screen hits) was used to evaluate the TFs and 

internal nodes together. 

Iteration 1 2 3 4 5 6 7 8 9 10 

Total 

predictions 

92 66 64 59 55 55 54 51 51 51 

Predicted 

internal 

29 18 20 19 19 19 19 17 17 17 

Gold 

standard 

internal 

30 30 30 30 30 30 30 30 30 30 

Internal 

overlap 

6 6 6 6 6 6 5 5 5 5 

Internal 

significance 

8.94 

× 10-9
 

3.65 

× 10-10
 

7.55 

× 10-10
 

5.31 

× 10-10
 

5.31 

× 10-10
 

5.31 

× 10-10
 

4.75 

× 10-8
 

2.55 

× 10-8
 

2.55 

× 10-8
 

2.55 

× 10-8
 

Predicted 

TFs 

63 48 44 40 36 36 35 34 34 34 

Gold 

standard 

TFs 

7 7 7 7 7 7 7 7 7 7 

TF overlap 4 4 4 4 4 4 4 4 4 4 

TF 

significance 

0.136 0.0555 0.0410 0.0292 0.0199 0.0199 0.0179 0.0161 0.0161 0.0161 

Gold 

standard 

or screen 

hit 

1167 1167 1167 1167 1167 1167 1167 1167 1167 1167 

Combined 

overlap 

31 21 19 19 18 18 17 17 17 17 

Combined 

significance 

0.00340 0.0279 0.0678 0.0314 0.0304 0.0304 0.0495 0.0292 0.0292 0.0292 
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Supplementary Methods 

DREM modification details 

At each split in the regulatory paths in the SDREM model, an activity score is calculated for all 

TFs.  The score at a particular bifurcation event e is the likelihood ratio 
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Initially, we place a uniform prior on TF activity such that 5.0)0()1(  aPaP .  In 

subsequent iterations, the prior is influenced by the network orientation such that TFs that are 

well-connected in the network have a larger prior.  Specifically, the new prior of a well-

connected TF is the average of 1.0 and the TF‟s prior at the previous iteration.  Poorly connected 

TFs have their prior reduced but not beyond the minimum prior of 0.01. 
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To estimate the remaining probabilities, the set of bound genes Gt is divided into two sets: those 

genes that are assigned to the primary path out of the split (gi = 1) and those assigned to the 

secondary path(s) out of the split (gi = 0). The set of genes assigned to the primary path is 

denoted GP and the set of genes on the secondary path is GS.  The primary path is the path out of 

the split followed by the majority of genes bound by the TF.  In the case of a tie, the path with 

the fewest genes (regulated by any TF, not just t) that is involved in the tie becomes the primary 

path.  All other paths out of the split are designated secondary paths and are considered as a 

single group.  There will always be at least one secondary path because the TF activity score is 

only calculated at nodes in the model that have two or more children.  After splitting genes by 

the path they take, the score becomes 
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We assume that all bound genes respond to TF activity in the same manner and estimate that 

80% of genes that are bound by a TF that is active in the stress condition are affected by the 

binding (Supplementary Results).  That is, 8.0)1|1(  agP i  and 2.0)1|0(  agP i .  

When the TF is not active, i.e. )0( a , the probability that a gene will be affected by the binding 

is given by the background distribution.  The background distribution is given by the percentage 

of all genes (not just the set bound by t) along each path out of the split.  

SP

P

i
OO

O
agP


 )0|1( , where OP is the set of all genes that follow the primary path out of 

the split and OS is the set of all genes on a secondary path out of the split.  Likewise, 
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 )0|0( .  Note that OP and OS exclude genes that are on another path and 

do not enter the split.  Thus, the final activity score is 
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The TF activity score at a particular iteration of SDREM is the maximum score achieved over all 

possible bifurcation events e.  To determine the significance of a specific activity score we use a 

randomization method.  We run DREM multiple times (10 for all analyses here) with protein-

DNA binding data that has been randomized.  This generates a distribution of random TF activity 

scores from which we select the top 50 activity scores from each randomized run.  All TFs with 

real activity scores in the 50
th
 or greater percentile in this distribution are considered active, and 

these TFs are used as targets during the subsequent network orientation.  Because TF activity 

scores can take arbitrarily large values, we normalize them before incorporating them into the 

network orientation objective function.  Activity scores are normalized by multiplying their 

percentile in the random distribution (not the score itself) by k, the maximum path length in the 

network orientation. 

 

Interaction network weighting 

All protein-protein interaction data was obtained from version 2.0.51 of BioGRID (Stark et al. 

2006).  The experimental method(s) used to detect interactions and number of times they were 

independently reported were used to weight all edges in the PPI network as previously described 

(Gitter et al. 2011), and only high-confidence edges with a weight of at least 0.6 were retained in 
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the network, as was done in this previous work.  The interaction network also included protein-

DNA edges, whose weights are provided in Supplementary Table S19. 

 

Supplementary Table S19. Protein-DNA interaction weights.  Condition refers to the 

condition in which the ChIP-chip experiment was performed, and conservation is the number of 

other yeast species in which the known binding motif is conserved. 

p-value threshold Condition Conservation Weight 

0.001 YPD 2 0.95 

0.001 YPD 1 0.8 

0.001 YPD 0 0.6 

0.005 YPD 2 0.7 

0.005 YPD 1 0.5 

0.005 YPD 0 0.3 

N/A Osmotic stress N/A 0.9 

0.001 Rapamycin N/A 0.9 

0.005 Rapamycin N/A 0.6 

 

Most existing approaches for weighting protein-DNA interactions are unable to simultaneously 

account for experimental p-value, binding motif conservation, and experimental condition, which 

all influence edge weights in our network.  The Physical Network Models strategy, for instance, 

uses p-values alone.  Like ResponseNet, we divide the protein-DNA interactions based on 

conservation of a binding motif if such a motif is present.  ResponseNet arbitrarily assigns a 

weight of 0.7 to protein-DNA interactions with a binding motif conserved in at least 2 other 

yeast species (Yeger-Lotem et al. 2009).  We instead elect to use 0.95 to be consistent with the 

weights of the highest confidence edges in our PPI network.  The remaining categories of edges 

are assigned lower weights based on how ChIP-chip p-value, binding motif conservation, and 

condition-specificity translate to edge reliability (similar to our prior approach with the PPI 

network where an expert assigned various confidence scores to different experimental methods).   
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Protein-DNA interactions with p-values greater than 0.005 were discarded.  The interaction 

networks used to build the osmotic stress and rapamycin models included the general interaction 

data plus either the osmotic stress or rapamycin binding data, respectively.  The YPD data only 

includes interactions with known binding motifs (MacIsaac et al. 2006).  The osmotic stress 

interactions were measured in cells treated with the salt KCl (Capaldi et al. 2008).  There is no p-

value threshold in Supplementary Table S19 for this dataset because only enrichment ratios are 

publicly available.  To obtain a set of interactions, we used the thresholds provided in Fig. 4 of 

Capaldi et al, in which it was reported that 82 Sko1 targets and 35 Hot1 targets had a p-value less 

than 0.05 in their custom peak-fitting model.  For each TF, we then selected this number of top-

ranked genes from the ChIP-chip enrichment ratio dataset.  For the rapamycin binding data 

(Harbison et al. 2004), p-values were available. 

 

Osmotic stress data and validation 

These 5 source proteins (Cdc42, Msb2, Sho1, Sln1, and Ste50) are the proteins in the Science 

Signaling Database of Cell Signaling HOG pathway representation that are upstream and do not 

have a parent node.  In addition to the signaling databases (Supplementary Table S3), we 

compiled a set of osmotic stress responders by considering several resources.  We included all 

genes that were annotated with decreased resistance to hyperosmotic stress in SGD 

(http://www.yeastgenome.org/cgi-

bin/phenotype/phenotype.pl?rm=specific_tables&phenotype=hyperosmotic%20stress%20resista

nce:%20decreased).  We also included genes if their deletion strains exhibited a fitness defect in 

sorbitol (Hillenmeyer et al. 2008).  For this sorbitol screen, we required that at least one p-value 

across all replicates was less than 10
-4

.  Finally, we searched the literature for proteins that were 

http://www.yeastgenome.org/cgi-bin/phenotype/phenotype.pl?rm=specific_tables&phenotype=hyperosmotic%20stress%20resistance:%20decreased
http://www.yeastgenome.org/cgi-bin/phenotype/phenotype.pl?rm=specific_tables&phenotype=hyperosmotic%20stress%20resistance:%20decreased
http://www.yeastgenome.org/cgi-bin/phenotype/phenotype.pl?rm=specific_tables&phenotype=hyperosmotic%20stress%20resistance:%20decreased
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previously identified to be associated with this response (see Supplementary Tables S1, S2, S4, 

and S5). 

 

The osmotic stress analysis incorporated Hot1 and Sko1 ChIP-chip measurements in the 

presence of salt (Capaldi et al. 2008).  Dynamic expression data collected from a wild type strain 

subjected to osmotic stress (0.4 M NaCl) was used to build the short model (Romero-Santacreu 

et al. 2009).  All replicates were included in the analysis.  The long model‟s expression data was 

from cells treated with sorbitol (Gasch et al. 2000).  Although both datasets were collected after 

subjecting yeast cells to an osmotic stress, we analyze both due to the differences in the 

transcriptional responses observed.  SDREM filters genes that are not differentially expressed, 

and of the 2707 genes that are differentially expressed in the short model and 2889 genes that are 

differentially expressed in the long model, only 1406 are present in both (making the similarity 

of the predicted network models quite remarkable). 

 

The p-values reported for the overlaps between the short model predictions and the HOG gold 

standard were calculated using Fisher‟s exact test.  We permissively define TFs to be any protein 

present in the ChIP-chip binding data (Harbison et al. 2004; Capaldi et al. 2008) with the 

exception of Hog1, a known MAPK.  Under this definition, the gold standard contains 7 TFs, 28 

of SDREM‟s predictions are TFs, and 4 of those predictions are in the gold standard.  Our 

dataset included 203 TFs that could potentially be chosen by SDREM, and the p-values were 

calculated in this context.  There were 30 non-TF SDREM predictions, 30 additional gold 

standard proteins, and 6 proteins in both sets.  For this p-value calculation we considered 5245 

possible proteins, which include all proteins in our physical interaction network and all gold 
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standard members.  The 5 source proteins given as input to SDREM are excluded from this 

analysis.  The p-value reported for the overlap between SDREM‟s predictions and the osmotic 

stress-related genes includes both the HOG gold standard members and genetic screen hits (from 

SGD and Hillenmeyer et al (Hillenmeyer et al. 2008)) in the positive set and considered all 

SDREM predictions (TFs and non-TFs) jointly.  Additional predictions that were validated only 

in the literature search also were excluded from this calculation.  The overlaps for the long model 

were calculated in the same manner. 

 

Microscopy 

Multiple repeats were collected for the control and sorbitol-exposed cells.  However, only a 

single representative image with clearly defined cell boundaries was selected for significance 

testing.  ImageJ (Abramoff et al. 2004) was used for all image post-processing and analysis.  

Background subtraction was performed using the default settings (the rolling ball algorithm with 

a 50 pixel radius) and the images were converted to grayscale.  Regions of interest (ROIs) were 

manually defined to annotate the cell boundaries, and the standard deviation of pixel intensity 

from all ROIs in an image was extracted (Supplementary Fig. S5).  Cells without distinct 

boundaries were excluded from the analysis.  A one-tailed t-test assuming unequal variance and 

sample sizes was used to calculate p-values.  Images in Fig. 4A are shown after background 

subtraction, and the original images are available on SDREM‟s supporting website. 

 

Flow cytometry 

All FACS replicates originally contained measurements from 50000 individual cells.  

Approximately half of these data points remained after filtering based on the FSC-A and SSC-A 
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values; similar filtering is customary in the analysis of FACS data (Bar-Even et al. 2006).  

Supplementary Table S20 shows how many outliers were removed in each replicate.  In some of 

the Cin5 and Spt23 replicates, the protein expression before sorbitol treatment was lower than 

the background, which lead to negative fold change values.  Experiments yielding negative fold 

change were excluded from subsequent analysis, which is why these two proteins were excluded 

from Fig. 4B.  P-values for Gcn4, Hog1, and Rox1 were calculated using a paired one-tailed t-

test, which tests the log2 mean background-subtracted protein expression levels (Supplementary 

Table S20).  Biological replicates were paired according to the date of the experiments. 

 

Knockout analysis 

ASF1, BEM1, FUS3, GAL11, PCL2, and RVS167 were selected for deletion due to their 

predicted role in the short model.  However, most were important nodes in the oriented network 

of the long model as well.  In addition, we excluded TFs from the set of potential knockout 

candidates and sought proteins that belonged to different levels of the signaling network 

hierarchy.  That is, some proteins were further upstream whereas others were downstream and 

interact directly with transcription factors. 

 

The Agilent scanner allows adjustment of the photomultiplier tube (PMT) sensitivity level.  Our 

comparison of gene expression fold changes at PMT sensitivity levels of 10% and 100% showed 

that they were not substantially different, and we used the 10% scans for all subsequent analysis. 

 

After scanning and processing per standard Agilent protocols (Agilent's Feature Extraction 

software version 10.7.3.1.), we removed probes for which the coefficient of variation was greater 
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than 40%.  For all microarray data we applied probe location normalization that is based on a 

Gaussian image filtering technique to correct for spatial bias, which was followed by quantile 

normalization.  For each array we removed control probes and aggregated the data to the gene 

level by taking the median expression level of all probes that corresponded to a particular gene. 

 

Genes that were not differentially expressed in the wild type osmotic stress datasets were 

excluded from further analysis.  Because different genes were differentially expressed in the two 

wild type datasets, we generated two knockout datasets for further processing.  For the short 

model, we required the wild type log2 differential expression to have magnitude of at least 1 and 

did not allow missing data.  This resulted in a set of 2655 genes (Supplementary Table S21) – 

slightly fewer than the number of genes used to build the regulatory paths in SDREM where 

missing data was allowed – of which 2624 were also on the arrays used for our knockouts.  For 

the long model, the log2 expression threshold was set to 0.5 and missing data was not allowed, 

yielding a set of 2858 genes.  Of these, 2784 were on our arrays (Supplementary Table S21). 

 

We then used significance analysis of microarrays (SAM) (Tusher et al. 2001) to identify 

significantly differentially expressed genes in the knockout data.  SAM was run using the two 

class unpaired response type, 1000 permutations, and default values for all other settings.  We set 

the delta parameter to the value that gave a false discovery rate of at most 0.2.  In addition, we 

required that significant genes had a minimum twofold change in expression.  SAM produced 

sets of significant up- and down-regulated genes that met these criteria.  The distinct sets of up- 

and down-regulated genes obtained from SAM were analyzed separately.  Because SAM 

imputes missing data, we eliminated genes for which all of the control readings or both of the 
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knockout replicate expression levels were missing from the sets of significant genes.  The SAM 

software depends on the statconnDCOM tool (Baier and Neuwirth 2007). 

 

Although SAM does not take log ratios as input, we also calculated log2 differential expression 

for the knockouts in order to facilitate reuse of the data.  After normalizing the data, we took the 

median of the two replicates per knockout and the replicates per control strain.  Log ratios were 

not calculated for genes in which expression levels across the replicates differed substantially 

(i.e. the log2 absolute expression levels disagreed by more than 1.5).  When four control 

replicates per gene where available, if only one replicate disagreed with the others then it was 

discarded and the log ratio was calculated using the other three.  The raw and normalized 

microarray data are available from GEO under accession number GSE28213. 

 

To identify which knockouts affected genes that overlapped significantly with the genes on 

SDREM regulatory paths, we used Fisher‟s exact test.  The results from the knockout dataset that 

was filtered using the short osmotic stress wild type expression data were only compared to the 

short model, and the same is true for the long osmotic stress expression data and model.  Rather 

than use the all yeast genes as the set of all genes in Fisher‟s exact test, we only use those genes 

that are affected by sorbitol, which yields conservative (larger) p-values.  The overlaps were 

calculated separately for the up- and down-regulated genes, and p-values were multiplied by the 

number of regulatory paths (10 for the short model and 9 for the long model) to correct for 

multiple hypothesis testing.  Fig. 5B and Supplementary Fig. S6B – S8 associate a protein with a 

regulatory path if either its differentially activated or repressed genes overlap the path with a 

corrected p-value less than 0.05.  For the osmotic stress-specific overlap analysis, all 868 general 



75 

environmental stress response genes (Gasch et al. 2000) were removed from the sets of genes on 

the regulatory paths and the knockout-affected genes before calculating the overlaps and their 

significance in the same manner (Supplementary Table S21). 

 

To calculate the significance of the number of regulatory paths that significantly overlap with 

one or more knockouts, we recalculated the overlaps using random regulatory paths.  These 

random regulatory paths contained the same number of genes on each path as the real regulatory 

paths, but the gene assignment to paths was random.  The same set of genes was used for the real 

and random paths.  We than calculated the number of random paths that significantly overlap one 

or more knockouts with a corrected p-value ≤ 0.05, and used these counts to determine the p-

values of the real enrichment.  For the osmotic stress-specific analysis, the procedure was 

identical except all ESR genes were filtered from the regulatory paths and knockout effects. 

 

TOR data and validation 

Urban et al (Urban et al. 2007) studied the effects of rapamycin in several yeast strains, and we 

used the dynamic expression data from the wild type strain with a log2 fold change threshold of 

1.  The extended gold standard data sources were described in the Supplementary Results.  For 

the Hillenmeyer et al rapamycin screen (Hillenmeyer et al. 2008), we required that in at least one 

of the seven replicates the p-value was less than 10
-4

 (Supplementary Results).  The p-value of 

the overlap between SDREM predictions and the rapamycin extended gold standard was 

calculated using Fisher‟s exact test.  Twenty-one of the 48 predictions were in the extended gold 

standard, which contained 1576 unique genes.  We considered 6446 possible genes, which 

includes all genes in our physical interaction network and all extended gold standard members.  
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Ten additional predictions that were validated only in the literature search were excluded from 

this calculation. 

 

Arabidopsis thaliana data, settings, and evaluation  

Unlike the yeast analysis, the Arabidopsis interaction network included host-pathogen PPI 

(Mukhtar et al. 2011) and Arabidopsis PPI (Arabidopsis Interactome Mapping Consortium 2011) 

but not the protein-DNA interactions (Yilmaz et al. 2011) that were used to learn the regulatory 

paths.  The interaction network also used a uniform weight of 0.75 because the types of evidence 

used to weight the yeast interaction network were not available.  All Hpa effectors were used as 

sources, and families of effectors were grouped as in the original data (Mukhtar et al. 2011).  A 

log2 fold change threshold of 0.5 was used for the temporal expression data (Wang et al. 2011)  

and no missing values were allowed.  The p-value for the overlap with the functionally validated 

Arabidopsis immune responders was calculated with respect to all proteins in the PPI network 

(i.e. all possible proteins SDREM could predict).  The Gene Ontology (Ashburner et al. 2000) 

analysis was performed using DAVID (Huang et al. 2009a, 2009b). 

 

Physical Network Models, ResponseNet, and GeneReg settings 

Although Physical Network Models and ResponseNet are both capable of linking sources and 

targets in a physical interaction network, they were not designed to connect upstream proteins in 

a signaling network to dynamic transcriptional effects.  Therefore, comparing them with SDREM 

requires running them in an untraditional manner or preprocessing the input data to emulate the 

types of input they expect (Methods).  We ran PNM using the default physical interaction 

network provided with its code because all trials that used our interaction network produced an 
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empty set of predictions.  This may be due to the much higher weights used in the PNM-

provided network.  Although SDREM finds source-target paths with up to 5 edges, we set the 

maximum path length for PNM to 4 because it was previously shown that PNM does not 

terminate in a reasonable time when run on the yeast interactome with a path length of 5 (Gitter 

et al. 2011). 

 

We ran ReponseNet via the ResponseNet web server (Lan et al. 2011), which takes as input a set 

of sources and set of targets.  For the sources, we used the 5 HOG pathway sources and did not 

assign weights so that the default uniform weights would be applied.  The user may optionally 

provide the PPI and protein-DNA interaction networks, and we uploaded the same weighted 

networks used in the SDREM analysis. 

 

We ran GeneReg on the long osmotic stress dataset, using the expression profiles of all genes 

that are not missing data and exceed a log2 fold change threshold of 0.5 in one or more time 

points (the same threshold was used for SDREM).  In the example GeneReg analysis (Huang et 

al. 2010), B-spline interpolation was applied to transform 30 time points into 100.  We similarly 

used B-spline interpolation to expand the osmotic stress dataset from 6 to 20 time points 

(approximately a threefold change).   The list of 47 potential regulators provided to GeneReg 

was created by intersecting the TFs in our protein-DNA dataset (MacIsaac et al. 2006; Capaldi et 

al. 2008) with the TFs that were differentially expressed.  Default values were used for the 

adjusted R
2
 cutoff, the maximum and minimum regulator coefficients, and all other parameters.  

The p-values for the HOG TF overlap were calculated with respect to all yeast TFs (Harbison et 
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al. 2004) (the same TFs used to calculate the p-values for SDREM), not the subset of TFs that 

were differentially expressed.  

 

Supplementary Table S20 

This table is a separate Excel spreadsheet that contains the mean protein expression levels from 

all FACS experiments that were used to calculate fold change for Fig. 4B. 

 

Supplementary Table S21 

This table is a separate Excel spreadsheet that contains the significance of the overlaps between 

knockout-affected genes and the SDREM regulatory paths.  The table also shows the overlaps 

between the TFs downstream of the knockouts in the oriented interaction network and the active 

TFs on the regulatory paths.  Lastly, it lists osmotic stress-specific genes used to calculate the 

overlaps between the knockout-affected genes and regulatory paths. 
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