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Supplementary Information

Algorithm parallelization and precomputation

SDREM was originally written as a single-threaded application, but we extended it to run on
a cluster to better handle the large human datasets. In order to assess the significance of TF
activity scores, SDREM generates a distribution of random TF activity scores by analyzing the
gene expression data many times (typically 10 or more) using randomized TF binding interactions.
Isolating these SDREM calls and executing them in parallel (approximately) reduces runtime of the
IOHMM component of SDREM by the factor min(n, r), where n is the number of cores available
and r is the number of randomizations. In the network orientation phase, we parallelized the depth
first search using a synchronized priority queue to track the highest confidence paths found across
all parallel threads. The source-target path enumeration tasks are divided based on the source node
such that the depth first searches from each source are allocated over the available cores.

In addition, a significant speedup to the network orientation component of SDREM can be
obtained by precomputing and writing all possible source-target paths to disk. In each iteration of
the original version of SDREM, paths were enumerated many times because the TF connectivity
was assessed by orienting a network that includes random targets, which changes the set of paths.
However, it is reasonable to limit the set of potential random targets to be only TFs or even only
those TFs that are present in the TF binding dataset (i.e. those TFs that could be identified as
active regulators during the gene expression analysis). We now search for all paths from a source to
any TF, write these paths to file, and read the appropriate stored paths for each new set of putative
active targets and random TFs. Enumerating paths once instead of many times at each iteration
offers immense savings computationally.

To test the impact of the approximation in which only the top m paths are stored, we used the
H1N1 data but only considered a high-confidence subset of the source proteins that interact with
multiple viral proteins and a small set of putative TF targets so that it was possible to enumerate
all paths repeatedly in a reasonable amount of time. After enumerating all ∼ 3 million paths, we
oriented the network 25 times and calculated node scores (the fraction of high-confidence paths
that pass through a node) and the total path weight of the top 1000 paths for each orientation. We
similarly calculated node scores and cumulative top path weight for 100 orientations in which only
the 100000 or 200000 highest-confidence paths were enumerated.
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Figure S1 shows that the actual node scores, which are used to identify which proteins participate
in the signaling pathways, are highly comparable to the approximate node scores. In addition,
increasing m from 100000 to 200000 does little to improve the approximation. The correlation
between the actual node scores and the approximate node scores is greater than 0.999 in both
cases. Similar results were obtained when using the top 100, 10000, or 50000 paths to calculate the
node score instead of the top 1000.

Figure S2 shows that the top-ranked paths obtained when enumerating only m paths are not
identical to those recovered when enumerating all paths. The sums of the path weights are similar,
however, indicating that the sets of paths are of similar confidence. Interestingly, enumerating fewer
paths results in top-ranked paths with greater cumulative weight. The low-confidence paths (that
are not enumerated) no longer affect the orientation, which means that there are fewer conflicts
preventing the high-confidence paths from being satisfied. This effect becomes more pronounced
as a larger number of top-ranked paths are considered (e.g. 10000 and 50000), suggesting that
it is preferable to consider only the top 1000 paths when limiting the number of paths that are
enumerated.

Data details

We downloaded protein interaction data from BioGRID (version 3.1.74) (Stark et al., 2006) and
post-translational modifications (PTMs) as well as PPI from release 9 of the Human Protein Refer-
ence Database (HPRD) (Mishra et al., 2006). Unlike the undirected BioGRID data, the PTM data
provides directionality, which helps further constrain our human signaling network models. PPI and
PTM weights were calculated based on the experimental methodology and number of independent
detections, as in (Gitter et al., 2011). For edge eA,B between proteins A and B

w(eA,B) = 1−
∏

i∈IA,B

(1− c(i)) (S1)

where w(eA,B) is the weight of the edge, i is a member of the set IA,B (all of the distinct instances
of that interaction in the PPI or PTM data based on experiment type and PMID), and c(i) is
the confidence in the class of experiments to which i belongs. The values of c(i) for the BioGRID
interactions are taken from (Gitter et al., 2011) and reproduced in Table S1. HPRD included
the more generic types of interaction evidence ‘in vivo’ and ‘in vitro’, both of which were given a
confidence of 0.6. TF-gene binding predictions from (Ernst et al., 2010) were processed as described
in (Schulz et al., 2012). The top 100 threshold was used in the interaction network and top 1000
threshold was used when analyzing the temporal expression data. The TF binding predictions are
general predictions (not cell type specific) because the H1N1 data was aggregated from multiple cell
types. Therefore we assigned them a low confidence of 0.3 in the interaction network. However, for
other SDREM applications it is possible to generate condition-specific TF binding predictions using
methods for integrating high-throughput data such as DNase I hypersensitivity (Neph et al., 2012).
In total, the interaction network contained 51799 PPI, 2612 PTM, and 59578 TF-gene interactions.

We downloaded the H1N1 expression data (Shapira et al., 2009) from GEO (GSE19392) (Barrett
et al., 2011) using the ‘HBEs infected with PR8 post trypsin’ samples as the treatments and the
‘HBEs treated with media alone’ samples as the controls taking the average value of the two
replicates at each time point before calculating fold change. For H1N1 we used the time points at
2 hours and beyond (six of the ten time points) because few transcriptional changes were observed
earlier. Similarly, we downloaded the H5N1 expression data (Li et al., 2011) from GEO (GSE28166)
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and took the median of the three replicates per time point before calculating fold change. For H5N1
we discarded the 0 hour time point because SDREM assumes that there is no differential expression
at time point 0. The temporal expression data for H1N1 and H5N1 were filtered to include the
approximately 3000 most differentially expressed genes using a log2 fold change threshold of 0.5 for
H1N1 and 2.5 for H5N1.

Node priors were derived from five screens for H1N1 (Brass et al., 2009; Shapira et al., 2009;
Karlas et al., 2010; König et al., 2010; Bortz et al., 2011) and one targeted screen for H5N1 (Bortz
et al., 2011) that contained only 32 hits. The H1N1 host-pathogen PPI were collected from the
VirHostNet database (Navratil et al., 2009) and the literature (Shapira et al., 2009; Tafforeau et al.,
2011). Likewise, H5N1 sources were compiled from VirHostNet and the literature (Liu et al., 2009;
Huang et al., 2009; Wang et al., 2009; Chen et al., 2010; Lee et al., 2010; Sharma et al., 2011;
Tafforeau et al., 2011). In addition, we included TLR3, TLR7, TLR8, RIG-I, and NLRP3 (Koyama
et al., 2007; Wang et al., 2008; Ichinohe, 2010) — proteins that either detect influenza viral RNA
or influenza infection via other means — as sources for H1N1 and H5N1. The H1N1 RNAi screens
affirm our assertion that screen hits are not a suitable choice for the signaling pathway source nodes
because they do not capture many of the most upstream proteins involved. Of the 204 sources,
only 42 (21%) are screen hits.

To test the gene prioritization algorithms’ sensitivity to the method used to identify differentially
expressed genes, we also used a simple fold change heuristic instead of EDGE (Leek et al., 2006)
to select the input genes and weights. For Endeavour’s input we used the sources and all genes
differentially expressed at least twofold at one or more time points. For Pinta we set all genes’
weights to be the maximum magnitude of the log2 fold change over all time points. Sources were
given a weight of 1, as previously recommended (Börnigen et al., 2012), if they did not already have
a greater weight due to their differential expression. Note that this heuristic is less robust than
EDGE’s significance analysis, which is specifically designed to account for temporal structure and
dependencies (Bar-Joseph et al., 2012). Consequently, both gene prioritization algorithms perform
worse using the fold change heuristic (Table S5).

SDREM model visualization

The regulatory paths in Figure 1 only show a TF annotation the first time that TF is active on the
path. SDREM annotates a TF on the upper path out of a split if the majority of the genes bound
by the TF that pass through the split follow the upper path (likewise for the lower path). The
signaling pathways were visualized with Cytoscape (Shannon et al., 2003). Although a node score
threshold of 0.01 was used to generate the SDREM model, meaning that 10 of the top 1000 paths
must pass through a node for it to be considered important, we relaxed this threshold to 0.005 for
the model visualization and analysis. This allowed us to examine more internal nodes (for the same
reason an even lower node score threshold of 0.001 was used when predicting RNAi screen hits and
genetic interactions). Not all of the nodes in Table S3 appear in Figure 1 because we only draw
the main connected component of the network. That is, the one TF and 103 source proteins that
do not directly interact with any other proteins in Table S3 are omitted. These omitted proteins
can still contribute to the response via pathways through other less important nodes that are not
members of the top-ranked paths.
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Running SDREM with limited data

Although we used SDREM to study the human immune response to H1N1 infection for which rich
input data is available, SDREM can also be readily applied in other conditions and species with
sparser datasets. Both SDREM and the original version of DREM have been applied in many
species (Schulz et al., 2012; Gitter et al., 2013). Our interpretation of these studies is that the
expression dataset should contain at least four time points, including the baseline time point 0,
in order to run SDREM. Furthermore, we recommend SDREM even when node priors are only
available for a few genes or in species where the PPI network is less complete than in human.

To demonstrate that SDREM still recovers accurate H1N1 response models with less input data,
we tested it using a smaller PPI network. The restricted PPI network consisted of interactions from
version 2.0.17 of BioGRID (Stark et al., 2006), the oldest archived version available, which was
released in June 2006. It contains 19577 unique PPI, about half as many as the current version of
BioGRID we used for all other analysis (version 3.1.74). The network is representative of the PPI
networks of other organisms that have not yet been studied as extensively as human. We did not
include interactions from HPRD (Mishra et al., 2006) but did include the TF-gene binding edges as
before. We independently tested SDREM using a smaller set of node priors by only placing priors
on the 69 genes that are hits in multiple H1N1 RNAi screens (7% of all screen hits).

Even with this limited data, SDREM still recovers many known immune response proteins in-
cluding STAT1, NFKB2, and IRF transcription factors. In both the limited PPI network and lim-
ited node prior settings, SDREM’s predictions are significantly enriched for the GO term ‘immune
system development’ (Benjamini-Hochberg corrected p-values 8.44 E-4 and 4.91 E-4, respectively).
Overall its predictions when using the limited PPI network or limited node priors are in good
agreement with the original H1N1 SDREM model that uses all available interaction and screen
data (Table S7). However, as expected, SDREM performs best when it is given more complete
data as input. Table S7 shows that more of SDREM’s predictions are RNAi screen hits in the
original H1N1 model than in the limited data models. Note that this comparison is biased against
the SDREM model that uses fewer node priors because it observes fewer screen hits as input.

To further explore the consequences of poor PPI coverage, we assessed which types of PPI data
are most helpful to SDREM. The PPI that make up the highest weight paths play a special role
because they are used to form SDREM’s highest confidence source-target connections. Therefore,
we examined the types of evidence used to support the PPI on the top 1000 paths versus all PPI.
Individual PPI can be supported by multiple experiments so we calculated the average number of
times each type of evidence is associated with an interaction (Table S8). We found that although
yeast two-hybrid experiments are the most abundant type of evidence overall, they are only the
fourth most abundant among the PPI on the top paths. On the other hand, smaller scale exper-
iments are enriched in the top paths. On average, the top path PPI are supported by more than
one ‘Affinity Capture-Western’ experiment each. For each type of evidence we computed the en-
richment in its average prevalence among the top path PPI versus all PPI. After controlling for our
confidence in each type of evidence by dividing by its confidence (Table S1), we found that ‘Affinity
Capture-Luminescence’ and ‘Biochemical Activity’ experiments are overrepresented among the top
path PPI and ‘Protein-peptide’ experiments are underrepresented. These insights can guide the
choice of PPI data to use with SDREM if a comprehensive PPI network is not available.
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Supplementary Tables

Table S1: Confidence scores for reported PPI and PTM

Experiment type Confidence
Affinity Capture-Luminescence 0.5
Affinity Capture-MS 0.5
Affinity Capture-RNA 0.7
Affinity Capture-Western 0.5
Biochemical Activity 0.5
Co-crystal Structure 0.99
Co-fractionation 0.7
Co-purification 0.7
Far Western 0.5
FRET 0.7
PCA 0.3
Protein-peptide 0.7
Protein-RNA 0.3
Reconstituted Complex 0.3
Two-hybrid 0.3
In vitro 0.6
In vivo 0.6

Table S2: Overlap among five H1N1 influenza infection RNAi screens (Brass et al., 2009; Shapira
et al., 2009; Karlas et al., 2010; König et al., 2010; Bortz et al., 2011). The vast majority of the
1009 genes are hits in only a single screen.

n Genes detected in n screens
1 940
2 62
3 6
4 1
5 0

Table S3: H1N1 SDREM model members. Sources are given as input, internal proteins are on the
signaling paths, and targets are active TFs. Screen hits are how many of the five RNAi screens
report the corresponding gene as a hit.

Protein Entrez gene id Role Screen hits
ABLIM1 3983 Source 0
ACACA 31 Source 1
ACOT9 23597 Source 0
ACTB 60 Source 0
AIMP2 7965 Source 0
ATL1 51062 Source 0
ATM 472 Source 0
ATP6V1G2 534 Source 0
BANP 54971 Source 0
BCAP29 55973 Source 0
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Protein Entrez gene id Role Screen hits
BHLHE40 8553 Source 1
BLZF1 8548 Source 0
BRD8 10902 Source 0
C10ORF35 219738 Source 0
C10ORF96 374355 Source 0
C14ORF166 51637 Source 0
C16ORF45 89927 Source 0
C1ORF94 84970 Source 0
C1QA 712 Source 0
C7 730 Source 0
CALCOCO1 57658 Source 0
CAPRIN1 4076 Source 0
CBS 875 Source 0
CCDC33 80125 Source 0
CD74 972 Source 0
CDC42 998 Source 0
CDC42EP4 23580 Source 0
CEP152 22995 Source 0
CEP70 80321 Source 0
CHD6 84181 Source 0
CHMP1B 57132 Source 0
CHMP6 79643 Source 0
CLNS1A 1207 Source 0
CMTM5 116173 Source 0
COL4A3BP 10087 Source 0
CREB3 10488 Source 0
CRK 1398 Source 0
CRKL 1399 Source 0
CRYAB 1410 Source 0
DAZAP2 9802 Source 0
DBT 1629 Source 1
DDB1 1642 Source 1
DDX17 10521 Source 1
DDX39B 7919 Source 0
DDX5 1655 Source 1
DDX58 23586 Source 0
DNM2 1785 Source 0
DOCK8 81704 Source 0
DST 667 Source 0
DVL2 1856 Source 0
DVL3 1857 Source 0
DYNLL2 140735 Source 0
EEF1A1 1915 Source 2
EEF1D 1936 Source 0
EIF2AK2 5610 Source 1
ELP4 26610 Source 0
EWSR1 2130 Source 0
EXOSC8 11340 Source 0
FTH1 2495 Source 0
FUS 2521 Source 1
FXR2 9513 Source 0
GABPB1 2553 Source 0
GABPB2 126626 Source 0
GLYAT 10249 Source 0
GLYR1 84656 Source 0
GMCL1 64395 Source 0
GNB2L1 10399 Source 0
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Protein Entrez gene id Role Screen hits
GSN 2934 Source 0
HNRNPA1 3178 Source 1
HNRNPM 4670 Source 1
HNRNPUL1 11100 Source 0
HOOK1 51361 Source 0
HSP90AA1 3320 Source 2
HSP90AB1 3326 Source 1
HSPA1A 3303 Source 1
HSPA8 3312 Source 1
HTATSF1 27336 Source 1
IGHM 3507 Source 0
IKZF3 22806 Source 0
ILF3 3609 Source 1
IMPDH2 3615 Source 1
IPO5 3843 Source 1
IPO9 55705 Source 0
ITM2B 9445 Source 0
KARS 3735 Source 0
KCNRG 283518 Source 0
KCTD7 154881 Source 0
KHDRBS1 10657 Source 0
KHDRBS3 10656 Source 0
KIAA0586 9786 Source 0
KIAA1143 57456 Source 0
KPNA1 3836 Source 1
KPNA2 3838 Source 1
KPNA3 3839 Source 1
KPNA4 3840 Source 1
KPNA5 3841 Source 0
KPNA6 23633 Source 0
LNX2 222484 Source 0
LRRFIP1 9208 Source 0
LYPLA1 10434 Source 0
MAGEA11 4110 Source 1
MAGEA2 4101 Source 0
MAGEA2B 266740 Source 0
MAGEA6 4105 Source 0
MAGED1 9500 Source 0
MAPK9 5601 Source 0
MARS 4141 Source 0
MCM2 4171 Source 0
MCM3 4172 Source 0
MCM4 4173 Source 0
MCM5 4174 Source 0
MCM7 4176 Source 0
MEOX2 4223 Source 0
MGC16075 84847 Source 0
MIPOL1 145282 Source 0
MLH1 4292 Source 0
MPI 4351 Source 0
MRI1 84245 Source 0
MTAP 4507 Source 0
NBPF22P 285622 Source 0
NCAPH2 29781 Source 0
NCL 4691 Source 1
NDUFS3 4722 Source 0
NLRP3 114548 Source 0
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Protein Entrez gene id Role Screen hits
NPM1 4869 Source 1
NRF1 4899 Source 0
NUP214 8021 Source 1
NUP54 53371 Source 0
NXF1 10482 Source 3
NXT1 29107 Source 0
OLA1 29789 Source 0
PA2G4 5036 Source 1
PABPC1 26986 Source 0
PARP1 142 Source 1
PCBD1 5092 Source 0
PIK3R1 5295 Source 0
PIK3R2 5296 Source 1
PLAC8 51316 Source 0
PNMA1 9240 Source 0
POLR2A 5430 Source 0
PPP2R5C 5527 Source 0
PRKRA 8575 Source 0
PTPMT1 114971 Source 1
QTRT1 81890 Source 0
RABGEF1 27342 Source 0
RAE1 8480 Source 0
RBPMS 11030 Source 0
RNF5 6048 Source 0
RPL11 6135 Source 0
RPL5 6125 Source 0
RPL8 6132 Source 0
RPL9 6133 Source 0
RPLP0 6175 Source 0
RPS5 6193 Source 1
RPS7 6201 Source 0
RPS9 6203 Source 0
RUVBL2 10856 Source 0
SDCBP2 27111 Source 0
SECISBP2 79048 Source 0
SEPT1 1731 Source 0
SETBP1 26040 Source 0
SIAH1 6477 Source 0
SLC16A9 220963 Source 0
SP100 6672 Source 0
SRP68 6730 Source 0
SRSF3 6428 Source 0
SSBP2 23635 Source 0
STAU1 6780 Source 0
STX5 6811 Source 1
TACC1 6867 Source 0
TAF6 6878 Source 0
TARBP2 6895 Source 0
TCF12 6938 Source 0
TFCP2 7024 Source 0
TLR3 7098 Source 0
TLR7 51284 Source 0
TLR8 51311 Source 0
TMEM86B 255043 Source 0
TRAF1 7185 Source 0
TRAF2 7186 Source 0
TRIM25 7706 Source 1
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Protein Entrez gene id Role Screen hits
TRIM28 10155 Source 2
TRIP6 7205 Source 0
TTC12 54970 Source 0
TUBA1B 10376 Source 0
TUBB 203068 Source 1
TUBB2A 7280 Source 0
TUBB2C 10383 Source 0
UBE2I 7329 Source 0
UROS 7390 Source 0
USHBP1 83878 Source 0
USP10 9100 Source 1
UXS1 80146 Source 0
VIM 7431 Source 0
VPS28 51160 Source 0
XPO1 7514 Source 1
XRCC5 7520 Source 1
XRCC6 2547 Source 1
YIPF6 286451 Source 0
ZBTB1 22890 Source 0
ZBTB25 7597 Source 0
ZMAT3 64393 Source 0
ZMAT4 79698 Source 1
ZNF346 23567 Source 0
AKT1 207 Internal 1
AR 367 Internal 0
CDKN1B 1027 Internal 1
CHUK 1147 Internal 1
CREB1 1385 Internal 1
CREBBP 1387 Internal 0
CTNNB1 1499 Internal 1
GRB2 2885 Internal 1
GSK3A 2931 Internal 1
GSK3B 2932 Internal 1
HIPK2 28996 Internal 1
HIST3H3 8290 Internal 1
JUN 3725 Internal 2
KAT2A 2648 Internal 0
KAT2B 8850 Internal 0
MAPK1 5594 Internal 1
MDM2 4193 Internal 2
NFKB1 4790 Internal 1
NFKBIA 4792 Internal 1
NR3C1 2908 Internal 0
PCNA 5111 Internal 0
PRKCA 5578 Internal 1
PRKCD 5580 Internal 1
RUNX1 861 Internal 2
RUNX2 860 Internal 0
SMAD3 4088 Internal 0
SMAD7 4092 Internal 1
SP1 6667 Internal 0
STUB1 10273 Internal 0
SUMO1 7341 Internal 1
TBK1 29110 Internal 1
TCF3 6929 Internal 1
TGFBR1 7046 Internal 1
TP73 7161 Internal 0
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Protein Entrez gene id Role Screen hits
TRIM21 6737 Internal 1
UBC 7316 Internal 1
AHR 196 Target 0
AIRE 326 Target 0
BRCA1 672 Target 0
DSP 1832 Target 1
E2F1 1869 Target 1
ELK1 2002 Target 1
EP300 2033 Target 1
ESR1 2099 Target 0
FOXO1 2308 Target 0
HIF1A 3091 Target 0
HSF1 3297 Target 0
IRF2 3660 Target 2
IRF3 3661 Target 0
IRF4 3662 Target 0
IRF5 3663 Target 0
IRF6 3664 Target 1
IRF7 3665 Target 0
IRF8 3394 Target 1
MYC 4609 Target 2
MYOD1 4654 Target 1
NFATC1 4772 Target 0
NFKB2 4791 Target 0
NR2F1 7025 Target 0
PPARA 5465 Target 1
RB1 5925 Target 0
RELA 5970 Target 0
SOX9 6662 Target 0
STAT1 6772 Target 0
TFAP2A 7020 Target 1
TFAP2C 7022 Target 1
TFDP1 7027 Target 0
TP53 7157 Target 0
XBP1 7494 Target 1

Table S4: H5N1 SDREM model members. Sources are given as input, internal proteins are on the
signaling paths, and targets are active TFs. Only RNAi screen hits from the small H5N1-specific
screen are reported

Protein Entrez gene id Role H5N1 RNAi screen
ATP6V1G1 9550 Source N
CASP8 841 Source N
COMMD1 150684 Source N
CPSF4 10898 Source N
DDX39B 7919 Source N
DDX58 23586 Source N
DNAJB1 3337 Source N
EIF2AK2 5610 Source N
EIF4G1 1981 Source N
ERBB3 2065 Source N
GLUL 2752 Source N
GNB2L1 10399 Source N
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Protein Entrez gene id Role H5N1 RNAi screen
GTF3C3 9330 Source N
HNRNPF 3185 Source N
HSPA8 3312 Source Y
ILF3 3609 Source Y
IPO5 3843 Source Y
IVNS1ABP 10625 Source N
KPNA1 3836 Source Y
KPNA2 3838 Source Y
KPNA6 23633 Source N
LY6D 8581 Source N
MT2A 4502 Source N
MX1 4599 Source N
NLRP3 114548 Source N
NOMO2 283820 Source N
NQO2 4835 Source N
NUP98 4928 Source N
PA2G4 5036 Source Y
PABPN1 8106 Source N
PCBP1 5093 Source N
PIGQ 9091 Source N
PPIA 5478 Source N
PSMA7 5688 Source N
SLPI 6590 Source N
SNAPC4 6621 Source N
STAU1 6780 Source N
TLR3 7098 Source N
TLR7 51284 Source N
TLR8 51311 Source N
XPO1 7514 Source N
AR 367 Internal N
ATR 545 Internal N
BAG1 573 Internal N
CASP3 836 Internal N
CCND1 595 Internal N
CDK9 1025 Internal N
CHEK2 11200 Internal N
CREBBP 1387 Internal N
DHX9 1660 Internal N
EGFR 1956 Internal N
ERBB2 2064 Internal N
HDAC1 3065 Internal N
HDAC3 8841 Internal N
HIF1A 3091 Internal N
HIST3H3 8290 Internal N
HSP90AA1 3320 Internal Y
HSPA1A 3303 Internal Y
HSPA4 3308 Internal N
ING1 3621 Internal N
JAK2 3717 Internal N
JUN 3725 Internal N
KPNB1 3837 Internal N
MAPK1 5594 Internal N
MAPK3 5595 Internal N
MDM2 4193 Internal N
MED1 5469 Internal N
NCOA1 8648 Internal N
NCOA2 10499 Internal N
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Protein Entrez gene id Role H5N1 RNAi screen
NCOA3 8202 Internal N
NCOA6 23054 Internal N
NCOR2 9612 Internal N
NFKBIA 4792 Internal N
NPM1 4869 Internal Y
NR3C1 2908 Internal N
NRIP1 8204 Internal N
PARP1 142 Internal Y
POU2F1 5451 Internal N
PPP1CA 5499 Internal N
PRKDC 5591 Internal N
PRMT1 3276 Internal N
RAF1 5894 Internal N
RELA 5970 Internal N
SIN3A 25942 Internal N
SMAD3 4088 Internal N
SMARCA4 6597 Internal N
SRC 6714 Internal N
STAT1 6772 Internal N
STUB1 10273 Internal N
SUMO1 7341 Internal N
SUMO4 387082 Internal N
UBC 7316 Internal N
ALX1 8092 Target N
ATF4 468 Target N
BRCA1 672 Target N
CASR 846 Target N
CREB1 1385 Target N
CREM 1390 Target N
DSP 1832 Target N
E2F1 1869 Target N
EGR1 1958 Target N
EP300 2033 Target N
ESR1 2099 Target N
GABPB1 2553 Target N
GATA1 2623 Target N
GATA2 2624 Target N
GATA3 2625 Target N
GTF2A1 2957 Target N
GTF2A2 2958 Target N
HES1 3280 Target N
HINFP 25988 Target N
HSF1 3297 Target N
IRF9 10379 Target N
NR1H3 10062 Target N
NR1I2 8856 Target N
NR2F1 7025 Target N
NR2F2 7026 Target N
NR5A1 2516 Target N
PAX2 5076 Target N
RB1 5925 Target N
REL 5966 Target N
RUNX2 860 Target N
RXRA 6256 Target N
RXRB 6257 Target N
SP1 6667 Target N
STAT3 6774 Target N
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Protein Entrez gene id Role H5N1 RNAi screen
STAT4 6775 Target N
STAT5B 6777 Target N
TFAP2A 7020 Target N
TP53 7157 Target N
VDR 7421 Target N
YY1 7528 Target N
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Table S5: Comparison of SDREM, Endeavour, and Pinta gene rankings when using fold change
to identify differentially expressed genes. In this setting SDREM’s advantage over Endeavour and
Pinta is even greater than when using EDGE to select the input genes.

Algorithm Settings Hits in
top 10

Hits in
top 20

Hits in
top 50

Hits in
top 100

SDREM Top, Targets, Weighted 6 8 18 42
Endeavour All evidence 2 4 10 24
Pinta Default 3 6 13 19

Table S6: The top 10 predicted H5N1 genetic interactions.

Gene A Gene B εAB P ob
AB P ex

AB P ob
A P ob

B
HSPA8 PA2G4 -0.0435 0.5798 0.6233 0.7647 0.8151
HSPA8 AR -0.0370 0.6025 0.6396 0.7647 0.8363
HSPA8 ILF3 -0.0234 0.6655 0.6888 0.7647 0.9008
HSPA8 KPNA2 -0.0199 0.6801 0.7000 0.7647 0.9154
ILF3 PA2G4 -0.0184 0.7159 0.7342 0.9008 0.8151
ILF3 AR -0.0162 0.7371 0.7533 0.9008 0.8363
KPNA2 PA2G4 -0.0156 0.7305 0.7462 0.9154 0.8151
GNB2L1 HSPA8 -0.0148 0.7018 0.7166 0.9371 0.7647
ESR1 PA2G4 -0.0142 0.7261 0.7403 0.9082 0.8151
HSPA8 CASP8 -0.0142 0.7045 0.7187 0.7647 0.9398

Table S7: Comparison of the original H1N1 SDREM model that uses all available input data and
variants that use restricted versions of the input data. The limited PPI model uses an older, smaller
BioGRID PPI network. The limited node prior model only places node priors on genes appearing
as hits in multiple RNAi screens. Predictions include proteins on the internal signaling paths and
TFs but not the source proteins given as input, which are the same in all models.

Original model Limited PPI model Limited node prior model
Predicted proteins 69 84 62
Predictions in RNAi screen hits 55% 37% 31%
Predictions in original model - 44% 66%
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Table S8: The average number of times each type of evidence is used to support a PPI. Top path
PPI are the 447 PPI that make up the 1000 paths with the highest weight in the SDREM H1N1
model. Enrichment is the ratio of evidence in the top path PPI versus all PPI. The normalized
version divides by edge confidence (Table S1)

PPI evidence All PPI Top path PPI Top path enrichment Normalized enrichment
Affinity Capture-Luminescence 0.000135 0.00224 16.55 33.11
Biochemical Activity 0.0234 0.139 5.92 11.85
Affinity Capture-Western 0.288 1.49 5.15 10.30
Reconstituted Complex 0.197 0.579 2.95 9.82
PCA 0.00189 0.00447 2.36 7.88
Co-fractionation 0.00635 0.0268 4.23 6.04
Co-purification 0.0152 0.0537 3.54 5.05
Far Western 0.00571 0.0134 2.35 4.70
Co-crystal Structure 0.00488 0.0201 4.12 4.16
FRET 0.00185 0.00447 2.41 3.45
In vitro 0.248 0.512 2.06 3.44
In vivo 0.121 0.148 1.22 2.04
Two-hybrid 0.301 0.181 0.60 2.01
Affinity Capture-MS 0.168 0.136 0.81 1.62
Protein-peptide 0.00394 0.00224 0.57 0.81
Affinity Capture-RNA 0.000174 0 0 0
Protein-RNA 0.000135 0 0 0
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Supplementary Figures

Figure S1: Node scores, the fraction of the top 1000 paths that pass through a particular protein,
are very similar when enumerating all paths or only the top 100000 paths. The node score obtained
when using all paths is shown along the x-axis. The y-axis provides the approximate node score.
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Figure S2: Histograms of the sum of the path weights for the top 1000 paths (the number of paths
used to calculate node scores). The blue histogram shows the distribution of the cumulative top
path weights when all paths are enumerated. The red histogram corresponds to the approximation
where only 100000 paths are used. Note that only 25 runs were used to generate blue histogram
versus 100 for the red histogram, accounting for the taller peaks in the red histogram.
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