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Supplementary Figure 1. Hypothesis of our genomic target prediction 1	
analysis: the effect of inhibiting a target by a small molecule is similar to 2	
that of knocking down the same target with sh-RNA. These effects can be 3	
manifested by the resulting expression profiles as well as the activation/inhibition 4	
of specific pathways. As we discuss in detail in the Online Methods, this 5	
assumption leads to the construction of several different types of features that we 6	
use to evaluate the similarity of the effects of the two treatments within the LINCS 7	
dataset. 8	
 9	
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Supplementary Figure 2. Comparing the random forest approaches with a 1	
random classifier for predicting known targets of the 152 drugs in the validation 2	
set. The red arrow indicates the success rate of on-the-fly random forest and the 3	
green arrow represents the two-level random forest. 4	
 5	
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Supplementary Figure 3. Correlation of target prediction accuracy and 1	
“structural uniqueness” of the query compound with respect to the training 2	
compounds. Each point in the plot represents one of the 53 compounds in our 3	
enrichment analysis. The structural uniqueness of a compound (x-axis) is defined 4	
as its maximum Tanimoto distance to any of the training compounds. The 5	
predicted ranking of the known target for each compound is shown on the y-axis. 6	
Orange and blue points represent the ranking pre- and post- structural filtering. 7	
 8	

 9	
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  11	
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Supplementary Figure 4. Result of the target-centric screen against CHIP. 1	
The plot on the left shows the 104 compounds predicted by random forest to bind 2	
CHIP, plotted according to the rank of CHIP in their predicted targets list (x - 3	
axis), vs. their CHIP docking score (y – axis). The shaded red area of the plot 4	
represents compounds that were filtered out of analysis due to low rank/score. 5	
The blue dots represent the compounds that were purchased for experimental 6	
validation. The histogram on the right shows the distribution of compounds by 7	
docking score. 8	
 9	
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  11	
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Supplementary Figure 5. Disruption of CHIP binding to chaperone peptide 1	
measured by fluorescence polarization. Results are the average and standard 2	
error of the mean of two experiments each performed in triplicate. 3	
 4	

 5	
 6	
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Supplementary Figure 6. Comparison of virtual screens against CHIP. 1	
HSP90 shows structure of the CHIP (grey) - HSP90 (magenta) interface (PDB 2	
ID: 2C2L1), indicating the hydrophobic (green spheres) and polar contact (blue 3	
surface / dashed lines) pharmacophores used to screen the ZINC database. 4	
Strong binders show predicted binding modes for compounds 2.1 and 2.2 from 5	
the LINCS screen, which showed the strongest FP signal and robust inhibition of 6	
CHIP ligases activity. Interestingly, 2.1 and 2.2 are the only predicted hits to 7	
make a novel hydrogen bond to CHIP residue Q102, a contact whose importance 8	
is not obvious from the cocrystal structure show predicted binding modes. Weak 9	
binders show predicted binding modes for compounds 2.3 and 2.4 from the 10	
LINCS screen, and compounds 1.1, 1.2, and 1.7 from the ZINC screen, which 11	
showed modest FP signal. Non-binders show predicted binding modes for non-12	
binding LINCS compounds 2.5 and 2.6, and non-binding ZINC compounds 1.3 – 13	
1.6. 14	
 15	

 16	
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18	
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Supplementary Figure 7. Predicted CHIP Inhibitors Prevent Ubiquitination of an 1	
Alternate Substrate. (A) Anti-GST western blot showing AT-3 JD substrate 2	
ubiquitination by CHIP in reactions treated with compounds. (B) Quantification of all 3	
reactions as in A treated with up to 500 µM compound 2.1, 2.2, or 2.6, normalized to 4	
ubiquitination by a DMSO treated control (all compounds: N=4). 5	
 6	
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Supplementary Figure 8. Pipeline-predicted targets for the drug wortmannin. 1	
Each point on the plot represents one structural model of one potential target 2	
predicted in the top 100 for wortmannin by the random forest regressor. The 3	
random forest ranking for each target (x axis) is plotted against the docking score 4	
ranking (y axis). The red dot indicates the ranking of the known target PIK3CA. 5	
The green dot indicates the ranking for the previously unknown target, PDPK1.	6	
	7	
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Supplementary Figure 9. Docking model of wortmannin bound to the PH 1	
domain of PDK1. (a) Cocrystal structure (PDB ID: 1W1G2) of the PH domain of 2	
PDK1 bound to the 4PT ligand which mimics the head group of it’s natural ligand 3	
PIP3. Dashed lines indicate key polar interactions. (b) Docking model of 4	
wortmannin bound to the PDPK1 PH domain, which captures many of the same 5	
polar interactions seen in the cocrystal. 6	
	7	
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	1	
Supplementary Figure 10. Alphascreen PDK1-PIP3 interaction-displacement 2	
assay results for increasing concentrations of wortmannin. 3	
	4	

	5	
	6	
 7	
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Supplementary Figure 11. Effect of wortmannin on the in-vitro phosphorylation 1	
of the substrate T308tide by the isolated catalytic domain of PDK1. The two lines 2	
are from two replicates of the activity assay, with error bars representing the 3	
standard error on the mean from two parallel runs for each replicate. 4	
 5	
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Supplementary Table 1. Results of testing our random forest classifier on 1	
the 123 FDA approved drugs profiled in 4-6 LINCS cell lines, after having 2	
trained our model on the 29 FDA approved drugs profiled in all 7 LINCS cell 3	
lines. The rank of the highest-ranking known target for each compound is listed 4	
next to their LINCS ID. We achiece top-100 predictions for 32 drugs, a 26% 5	
success rate.  6	
 7	
** Table provided as a separate tabular data file supp_table_1.txt 8	
 9	
  10	
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Supplementary Table 2. Structural enrichment of random forest predictions 1	
for validation hits and comparison with existing methods. Our 63 `hits' are 2	
listed with their LINCS ID and the number of top-100 predicted targets that had 3	
structures available in the PDB. The ranking of the known targets are shown after 4	
our genomic random forest target prediction (GEN), and after our structural re-5	
ranking (STR), along with the percentile rankings produced by alternative target 6	
prediction methods HTDocking (HTD) and PharmMapper (PHM). STR, HTD, and 7	
PHM values of 100 indicate that the structure of the known target either is not 8	
known or was not included in the set of potential targets used by the method.  9	
 10	
 11	
** Table provided as a separate tabular data file supp_table_2.txt 12	
 13	
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Supplementary Table 3. Predicted CHIP-targeting compounds out of 104 1	
candidate molecules. ‘CHIP RANK’ indicates the ranking of CHIP in the 2	
random-forest predicted list of potential targets for each compound. ‘CPD RANK’ 3	
indicates the structure-based ranking of the compound after docking of all 104 4	
candidate compounds to the HSP90 binding site on the CHIP-TPR domain. 5	
 6	

Cpd	#	 NAME	 ID	 CHIP	
RANK	

CPD	
RANK	

2.1	 phenolphthalein	 BRD_K19227686	 2	 22	
2.2	 HSP90_inhibitor	 BRD_K65503129	 2	 4	
2.3	 axitinib	 BRD_K29905972	 8	 13	
2.4	 BRD_K59556282	 BRD_K59556282	 11	 92	
2.5	 SB_431542	 BRD_K67298865	 34	 17	
2.6	 MW_STK33_2B	 BRD_K78930611	 51	 16	

 7	
 8	
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Supplementary Table 4. Symbols and notations 1	

 2	
 3	
 4	
  5	

Symbol Meaning 
d Index for a drug 
c Index for a cell line 
g Index for a gene 
ND Total number of genes 
NC Total number of cell lines 
Cd The set of cell line indeces for drug d 
Pd The set of protein target indeces for drug d 
Gc The set of knockdown gene indeces for cell line c 
Td The intersection of knockdown gene indeces Gc for all cell lines in Cd 
Ndc Number of experiments for applying drug d to cell line c 
Ngc Number of experiments for knocking down gene g in cell line c 
Ng Neighbors, or protein-protein interaction partners, of gene g 
Δ Drug-response data 
Γ Gene-knockdown data 
Ψ Control data 
Ω Full feature data 
Xd Training data derived from drug d 
yd Training label derived from drug d 
νd Negative (non-target) genes for drug d 
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Supplementary Table 5. Summary of constructed feature sets. Note that 1	
different feature sets can have different dimensions (some contain values for 2	
each of the cell lines, etc…). The exact dimension and content of each feature 3	
set is discussed in the text. 4	
 5	

  6	

Feature 
Name Symbol Meaning 

Correlation fcor 
Correlation between a drug treatment experiment 
and a gene knockdown experiment 

Cell Selection fCS Correlation between a drug treatment experiment 
and the control experiment for the cell line 

PPI 
Correlation fPC Fraction of the known binding partners of a gene 

in the top X correlated knockdown experiments 

PPI 
Expression fPE 

The average or the max (absolute value) 
expression for the known binding partners of a 
gene 
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Supplementary Table 6. The number of drugs profiled for different number of 1	
cell lines included in the validation dataset. While several drugs were profiled in 2	
at least four of these cell lines (152), only 29 were profiled in all seven cell lines. 3	
 4	

  5	# Cells 7 6 5 4 Total 
# Drugs 29 30 42 51 152 
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Supplementary Table 7. Seven cell lines were included in the validation dataset. 1	
The number of drugs, knockdown genes, and control experiment are shown. For 2	
a given cell line, we only include drugs that have their target knockdown 3	
experiments available in that cell line. 4	
  5	

Cell Line Drugs Knockdowns Controls 
A549 188 11947 52 
MCF7 180 12031 54 
VCAP 175 13225 56 
HA1E 172 11968 53 
A375 143 11696 58 
HCC515 129 7828 52 
HT19 96 10185 52 
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Supplementary Table 8. The cellular localization of successful and 1	
unsuccessful drug targets enriched by gene ontology. 2	
 3	

 4	
  5	

		 Cellular	Component	 p-value	

Successful	
Targets	

proteasome	core	complex	 7.81E-37	
proteasome	core	 1.10E-28	
proteasome	alpha-subunit	 5.68E-18	
cytosol	 7.53E-12	
protein	complex	 1.88E-11	

Failed	
Targets	

transmembrane	transporter	complex	 7.77E-15	
sodium-exchanging	ATPase	complex	 4.42E-14	
cation-transporting	ATPase	complex	 8.74E-13	
plasma	membrane	part		 2.19E-11	
chloride	channel	complex	 2.33E-09	
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Supplementary Results 1	
 2	
Gene	ontology	analysis	of	protein	targets	3	
While	 the	success	 rate	of	our	Random	Forest	genomic	analysis	 is	promising,	 there	are	4	
still	 several	 drugs	 for	which	we	 fail	 to	 correctly	 identify	 the	 target.	We	 attempted	 to	5	
determine	 if	 the	genomic	data	we	used	 is	more	appropriate	 to	specific	drug	/	protein	6	
characteristics.	By	characterizing	the	set	of	drugs	and	/	or	proteins	for	which	we	expect	7	
the	method	to	be	more	accurate	we	improve	the	ability	of	experimentalists	to	use	our	8	
methods	when	studying	one	of	these	molecules.	9	
	10	
We	divided	the	152	drugs	in	our	training	data	into	“successful”	predictions	(the	63	drugs	11	
for	which	the	correct	target	was	ranked	in	the	top	100),	and	“unsuccessful”	predictions.	12	
We	also	divided	the	known	targets	 into	those	that	were	correctly	predicted	and	those	13	
that	were	 not.	We	 considered	 several	 different	ways	 to	 characterize	 small	molecules	14	
including	molecular	weight,	solubility,	and	hydrophobicity,	but	none	of	these	seemed	to	15	
significantly	correlate	with	our	“successful”	and	“unsuccessful”	classifications.	Next,	we	16	
used	 gene	 ontology	 (Online	 Methods)	 to	 test	 for	 enrichment	 of	 “successful”	 and	17	
“unsuccessful”	 targets.	 Interestingly,	 we	 found	 that	 “successful”	 targets	 were	18	
significantly	 associated	 with	 intracellular	 categories,	 while	 the	 “unsuccessful”	 targets	19	
were	 mostly	 associated	 with	 transmembrane	 and	 extracellular	 categories	20	
(Supplementary	Table	8).		21	
	22	
Based	on	this	result	we	further	incorporated	cellular	component	as	a	feature	in	our	two-23	
level	random	forest.	We	encode	this	feature	by	assigning	1	to	the	intracellular	genes	and	24	
-1	 to	 the	 extracellular	 ones	 (see	 Online	 Methods	 for	 detail).	 We	 ran	 the	 two-level	25	
random	forest	with	this	additional	feature	included	and	demonstrated	that	the	cellular	26	
component	increases	the	number	of	top	100	genes	to	66	and	top	50	genes	to	55.		27	
	28	
	29	
  30	
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Supplementary Methods 1	
 2	
Extracting experiments from LINCS 3	
After determining the subsets of small molecules and cell lines, we obtained the 4	
associated experiment identifiers known as “distil IDs” from LINCS meta- 5	
information. We included only the reproducible distil IDs known as “Gold” IDs. 6	
We then extracted the corresponding signature values from LINCS using the 7	
L1000 Analysis Tools (l1ktools)1. We only extracted the signature values of the 8	
978 “landmark" genes because their expression was directly measured, whereas 9	
the values of other genes were imputed from the data of these landmark genes. 10	
 11	
Drug response experiments  12	
There exist multiple experiments (distil IDs) corresponding to a combination of 13	
drug d and cell line c (applying drug d to cell line c). Denote the Ndc as the 14	
number of experiments for the combination d,c. We extracted a matrix of 15	
signature values of size 978 × Ndc (number of landmark genes × number of 16	
experiments) per combination. We next took the median of signature values 17	
across different experiments, and obtained a 987 ×  1 signature vector per 18	
combination. The overall drug-response data Δ, therefore, is implemented as a 19	
MATLAB structure with D = 152 entries, each containing the following fields. 20	
 21	

 name:  𝑃𝑒𝑟𝑡𝐼𝐷! (string) 22	
 cells:  𝐶𝑒𝑙𝑙𝑠!! ( 𝐶!  × 1 string array) 23	

 signature:  ∆!∙∙ (978 × 𝐶! ) 24	
 25	

where 𝑃𝑒𝑟𝑡𝐼𝐷! is the unique internal identifier of a small molecule d in LINCS. 26	
∆!∙∙ contains the expression values of drug d across Cd different cell lines. The 27	
𝐶𝑒𝑙𝑙𝑠!! field contains cell line names corresponding to the column of ∆!∙∙. 28	
 29	
Gene knockdown (KD) experiments  30	
We follow a similar protocol to extract the signature values of gene knockdown 31	
experiments. Denote Ngc as the number of experiments for the combination of 32	
gene g and cell line c (knocking down gene g in cell line c). Then, for each 33	
combination of g and c we extracted signature values of size 978 × Ngc. After 34	
taking the medians across different experiments, we obtain a 978 × 1 vector per 35	
combination. The overall gene knockdown data Γ has C = 7 entries and each 36	
entry contains the following fields: 37	
 38	
 name:  𝐶𝑒𝑙𝑙𝑠! (string) 39	
 genes:  𝑆𝑦𝑚𝑏𝑜𝑙𝑠!! ( 𝐺!  × 1 string array) 40	
 signature:   Γ!∙∙ (978 × 𝐺! ) 41	
 42	
where 𝐶𝑒𝑙𝑙𝑠! is the name of the cell line indexed by c.  Γ!∙∙ contains the signature 43	
values of the knockdown of genes in cell line c. The 𝑆𝑦𝑚𝑏𝑜𝑙𝑠!! field is a subset of 44	

																																																								
1 https://github.com/cmap/l1ktools 
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gene symbols corresponding to the column identifiers of Γ!∙∙ under the HGNC 1	
naming scheme. 2	
 3	
Control experiments 4	
We also extracted the signatures of control experiments. The signature values for 5	
each cell line were extracted and we obtained a 978 × 1 vector after taking the 6	
medians. We denote the overall control experiment data as Ψ. Ψ is of size 978 ×7	
 C and implemented with the following format: 8	
 9	
 name:  𝐶𝑒𝑙𝑙𝑠! (string) 10	
 control: Ψ∙! (978 × 1) 11	
 12	
where Ψ∙! is the signature column vector for a cell line c. 13	
 14	
 15	
Extracting and integrating features from different data sources 16	
 17	
Correlation feature 18	
The correlation feature, denoted as fcor, is constructed as follows: 19	
 20	
- For each drug d in Δ (∆!∙∙): 21	

 22	
- Denote Td as the intersection of gene symbol indices for cells in Cd: 23	

  24	
𝑇! = 𝐺!

!∈!!

 

 25	
- Obtain the knockdown signature values of Td  from Γ. Denote this data 26	
matrix as Γ!!∙!!, which is of size 𝐶!  × 978 × 𝑇! , where for each cell line in 27	
Cd  there is a signature matrix of size 978 × 𝑇! . 28	
 29	
 30	
- Compute the Pearson's correlation between ∆!∙∙ (978 × 𝐶! ) and Γ!!∙!! ( 𝐶!  31	
×  978 ×  𝑇! ). Specifically, for each cell line 𝑐 ∈ 𝐶! , we compute the 32	
correlation between ∆!∙! and Γ!∙!!, and obtain a correlation vector of size 𝑇! . 33	
This is the correlation between the responses of the cells to the drug 34	
treatment and their response to the gene KD. Each entry in this vector is the 35	
correlation of 978 landmark genes of the drug d in one cell line (∆!∙!) and a 36	
knockdown of gene g in the same cell line (Γ!∙!). In other words, if we collect 37	
these correlation vectors for all cell lines in Cd and denote the overall 38	
correlation feature as fcor: 39	

 40	
𝑓!"# 𝑑,𝑔, 𝑐 = 𝑐𝑜𝑟𝑟(∆!∙! , Γ!∙!)     ∀𝑔 ∈ 𝑇! 41	

 42	
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The correlation feature for one drug d, 𝑓!"# 𝑑,∙,∙ , has a dimension of 𝑇!  × 1	
𝐶! . 2	

 3	
Cell selection feature 4	
The cell selection feature, denoted as fCS, is computed as follows: 5	
 6	
- For each drug d in Δ (∆!∙∙): 7	
 8	

- For each cell line c in Cd: 9	
 10	
- Compute the correlation between ∆!∙! and Ψ∙! 11	

 12	
𝑓!" 𝑑, 𝑐 = 𝑐𝑜𝑟𝑟(∆!∙! ,Ψ∙!) 

 13	
𝑓!" 𝑑,∙  produces a 𝐶!  × 1 vector, and each entry corresponds to the correlation 14	
between the drug-response and control experiments for one cell line in Cd. This 15	
feature is used to determine the relevance of the drug to the cell type being 16	
studied. 17	
 18	
PPI correlation score:  19	
The PPI correlation Score, denoted as fPC is constructed as follows: 20	
 21	
- For each drug d in Δ (∆!∙∙): 22	
 23	

- Obtain Td, as defined above. 24	
 25	
- For each cell line c in Cd: 26	
 27	

- Sort Td in descending order using the correlation values 𝑓!"# 𝑑,∙, 𝑐  28	
 29	
- Denote the sorted gene symbol indices for cell line c as 𝜎!(𝑇!) 30	
 31	
- For each knockdown gene g in Td: 32	
 33	

- Obtain the set of neighbor gene symbol indices from the PPI 34	
adjacency list, and denote it as Ng. 35	
 36	
- Compute fPC as: 37	
 38	

𝑓!" 𝑑,𝑔, 𝑐 =
𝑁! ∩ 𝜎!(𝑇!)!:!""
𝑁! ∩ 𝜎!(𝑇!) + 50

 

 39	
𝑓!" 𝑑,𝑔, 𝑐  has the same dimension as 𝑓!"# ( 𝑇!  × 𝐶! ). It reflects the fraction of 40	
gene g's binding partners that are more correlated with drug d in the context of 41	
cell line c. We use 50 as the pseudo-count to penalize hub proteins, which have 42	
substantially more neighbors than others. 43	
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 1	
PPI expression score 2	
We compute two types of PPI expression scores, denoted as 𝑓!"!"# and 𝑓!"!"#, 3	
as follows: 4	
 5	
- For each drug d in Δ (∆!∙∙): 6	
 7	

- For each knockdown gene g in Td: 8	
 9	

- Obtain Ng, as above (the list of neighbors, or interaction partners, of g) 10	
 11	
- For each cell line c in Cd: 12	
 13	

- Find the set of signature values for the neighbors of g, ∆!,!!,! (size 14	
𝑁!  × 1) 15	

 16	
- Compute the two PPI expression scores as: 17	
 18	

𝑓!"!"# 𝑑,𝑔, 𝑐 = max (∆!,!!,!) 
 19	

𝑓!"!"# 𝑑,𝑔, 𝑐 = avg (∆!,!!,!) 
 20	

 21	
Feature data structure 22	
We combined the features for all drugs in a MATLAB structure Ω. Ω has D 23	
entries, and each entry Ω(d) has the following fields: 24	
 25	

 name:  𝑃𝑒𝑟𝑡𝐼𝐷! (string) 26	
 targets: 𝑃! (protein targets for d) 27	

 cells:  𝐶𝑒𝑙𝑙𝑠!! ( 𝐶!  × 1 string array) 28	
 genes: 𝑇! (common genes across Gc) 29	
 correlation: 𝑓!"#(𝑑,∙,∙) ( 𝑇!  × 𝐶! ) 30	
 PPI correlation: 𝑓!"(𝑑,∙,∙) ( 𝑇!  × 𝐶! ) 31	
 max PPI expression: 𝑓!"!"#(𝑑,∙,∙) ( 𝑇!  × 𝐶! ) 32	
 avg  PPI expression: 𝑓!"!"#(𝑑,∙,∙) ( 𝑇!  × 𝐶! ) 33	
 cell selection: 𝑓!"(𝑑,∙) ( 𝐶!  × 1) 34	
 35	
There are a total of D = 152 drugs in Ω, and the number of drugs with different 36	
values of 𝐶!  are summarized in Supplementary Table 6. 37	
 38	
 39	
Subcellular Localization Assignment 40	
We obtained the cellular localization of genes from the Gene Ontology 41	
Consortium. The GO database provides web services to query genes in terms of 42	
their associated biological processes, cellular components and molecular 43	
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functions in a species-independent manner2. We further assign the locations as 1	
either “intracellular” (inside of cell) or “extracellular” (outside of cell). The detailed 2	
assignments are shown in Supplementary Table 8. 3	
 4	
 5	
Classification procedure 6	
 7	
Criterion of successful classification 8	
Due to the intrinsic noise from the data, we define a successful classification for a 9	
drug if any of its correct targets is enriched into the top K ranked genes, where K  10	
can be either 50 or 100. 11	
 12	
Analysis of feature importance 13	
The evaluation of single features was performed using the drugs that have been 14	
applied on all seven cell lines. There are 29 of these drugs from Ω. We sort 15	
(descendingly) the common genes Td for a drug d and cell line c using an 16	
individual feature 𝑓(𝑑,∙, 𝑐), where 𝑓 is either 𝑓!"#  or 𝑓!" . Denote 𝜎!(𝑔, 𝑐) as the 17	
ranking of a gene 𝑔 ∈ 𝑇! in the context of cell line c. Then, we define the overall 18	
ranking of a gene, 𝜎!(𝑔), to be the best ranking across all seven cell lines: 19	
𝜎! 𝑔 = min (𝜎! 𝑔, 𝑐 ) for 𝑐 ∈ 𝐶!. 20	
  21	
Constructing training dataset 22	
Next, we wish to learn and evaluate classifiers that predict drug targets using all 23	
features from the feature dataset Ω. We first construct a training data set (design 24	
matrix X and its associated labels y) from the feature dataset Ω. 25	
 26	
For each drug d in Ω, we select the rows corresponding to the targets in Pd from 27	
the other feature matrices and concatenate them into a row vector. The same cell 28	
selection vector is appended to every row of targets. These rows are assigned 29	
with a positive label 1. We then randomly sampled 100 non-target genes 30	
(denoted as 𝜈!) and construct the row vectors the same way as the target genes, 31	
and these rows are assigned with a negative label 0. In other words, the training 32	
matrix and label vector constructed from a drug d are of the following format: 33	
 34	

𝑋! =

𝑓!"#(𝑑,𝑃!!,∙) 𝑓!"(𝑑,𝑃!!,∙) 𝑓!"!"#(𝑑,𝑃!!,∙) 𝑓!"!"#(𝑑,𝑃!!,∙) 𝑓!"(𝑑,∙)

𝑓!"#(𝑑,𝑃!!,∙) 𝑓!"(𝑑,𝑃!!,∙) 𝑓!"!"#(𝑑,𝑃!!,∙) 𝑓!"!"#(𝑑,𝑃!!,∙) 𝑓!"(𝑑,∙)

⋮ ⋮ ⋮ ⋮ ⋮

𝑓!"#(𝑑,𝑃!",∙) 𝑓!"(𝑑,𝑃!",∙) 𝑓!"!"#(𝑑,𝑃!",∙) 𝑓!"!"#(𝑑,𝑃!",∙) 𝑓!"(𝑑,∙)

𝑓!"#(𝑑, 𝜈!!,∙) 𝑓!"(𝑑, 𝜈!!,∙) 𝑓!"!"#(𝑑, 𝜈!!,∙) 𝑓!"!"#(𝑑, 𝜈!!,∙) 𝑓!"(𝑑,∙)

𝑓!"#(𝑑, 𝜈!!,∙) 𝑓!"(𝑑, 𝜈!!,∙) 𝑓!"!"#(𝑑, 𝜈!!,∙) 𝑓!"!"#(𝑑, 𝜈!!,∙) 𝑓!"(𝑑,∙)

⋮ ⋮ ⋮ ⋮ ⋮

𝑓!"#(𝑑, 𝜈!!"",∙) 𝑓!"(𝑑, 𝜈!!"",∙) 𝑓!"!"#(𝑑, 𝜈!!"",∙) 𝑓!"!"#(𝑑, 𝜈!!"",∙) 𝑓!"(𝑑,∙)

; 𝑦! =

1

1

⋮

1

0

0

⋮

0

 35	

 36	
																																																								
2	http://geneontology.org/page/go-enrichment-analysis	
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where 𝑚 = 𝑃! , the total number of targets for drug d. Therefore, the training 1	
matrix Xd for drug d is of size (𝑚 + 100) × 5 𝐶! , and label vector 𝑦! has length 2	
(𝑚 + 100). 3	
 4	
 5	
 6	
 7	
 8	
 9	

 10	
 11	
 12	
 13	
 14	
  15	
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